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1. Introduction

The Maldacena conjecture provides a unique window into the strongly coupled physics of

gauge theories in terms of a string theory [1, 2]. A crucial ingredient in the AdS/CFT

correspondence is the state/operator correspondence. It provides the basis for explicit

computations. Calculationally, it is convenient to consider the limit of large ’t Hooft

coupling where the supergravity approximation is valid. More precisely, chiral operators

of the CFT are in correspondence with the modes of supergravity in the dual background.

However, much information is contained in the stringy sector of the correspondence and

some of it crucially survives the large ’t Hooft limit.

For example, as discovered by Witten [3] in discussing the duality in the case of N = 4

super Yang-Mills (SYM) theory with gauge group SO(2N) and its dual AdS5 × RP
5, the

gravity side must contain branes, just to accommodate a class of chiral operators of the

gauge theory. The study of branes wrapped in the gravity theory becomes an intrinsic part

of the correspondence. It has been extended and understood in a variety of situations.

For example, a vertex connecting N fundamental strings –known as the baryon vertex–

can be identified with a baryon built out of external quarks, since each string ends on a

charge in the fundamental representation of SU(N). Such an object can be constructed by

wrapping a D5-brane over the whole five-dimensional compact manifold [3]. Also, domain

walls in the field theory side can be understood as D5-branes wrapping 2-cycles of the

internal geometry [3, 4]. In quantum field theories that arise from D3-branes placed at

conical singularities, an object of particular interest is given by D3-branes wrapped on

supersymmetric 3-cycles; these states are dual to dibaryons built from chiral fields charged

under two different gauge groups of the resulting quiver theory [3 – 6]. In the absence of

a string theory formulation on backgrounds with Ramond-Ramond forms, probe D-branes

of various dimensions provide valuable information about the spectrum. More generally,

finding particular situations where a semiclassical description captures nontrivial stringy

information is an important theme of the AdS/CFT correspondence recently fueled largely

by BMN in [7], but having its root in the work of Witten [3] and in considerations of the

Wilson loop as a classical string in the supergravity background [8].

Given a Sasaki-Einstein five-dimensional manifold X5 one can consider placing a stack

of N D3-branes at the tip of the (Calabi-Yau) cone over X5. Taking the Maldacena limit

then leads to a duality between string theory on AdS5 × X5 and a superconformal gauge

theory living in the worldvolume of the D3-branes [9]. When the Sasaki-Einstein manifold

is the T 1,1 space –the Calabi-Yau cone being nothing but the conifold– we have the so-called

Klebanov-Witten model [10], which is dual to a four-dimensional N = 1 superconformal

field theory with gauge group SU(N) × SU(N) coupled to four chiral superfields in the

bifundamental representation. Important aspects of this duality, relevant in the context

of this article, have been further developed in [4, 5, 11]. The supersymmetry of D-brane

probes in the Klebanov-Witten model was studied in full detail in ref. [12].

Recently, a new class of Sasaki-Einstein manifolds Y p,q, p and q being two coprime

positive integers, has been constructed [13, 14]. The infinite family of spaces Y p,q was

shown to be dual to superconformal quiver gauge theories [15, 16]. The study of AdS/CFT
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in these geometries has shed light in many subtle aspects of superconformal field theories

in four dimensions. Furthermore, the correspondence successfully passed new tests such as

those related to the fact that the central charge of these theories, as well as the R-charges

of the fundamental fields, are irrational numbers [17].

In this paper we perform a systematic classification of supersymmetric branes in the

AdS5×Y p,q geometry and study their field theoretical interpretation. It is worth reminding

that the spectrum of IIB supergravity compactified on Y p,q is not known due to various

technical difficulties including the general form of Heun’s equation. Therefore, leaving

aside the chiral primaries, very little is known about the gravity modes dual to protected

operators in the field theory. Our study of supersymmetric objects in the gravity side is

a way to obtain information about properties of these operators in the gauge theory side.

They comprise interesting physical objects of these theories such as the baryon vertex,

domain walls, the introduction of flavor, fat strings, etc. It is very remarkable that we

are able to provide precise information about operators with large conformal dimension

that grows like N . Moreover, we can also extract information about excitations of these

operators.

The main technique we employ to determine the supersymmetric embeddings of D-

brane probes in the AdS5 × Y p,q background is kappa symmetry [18] and follows the

same systematics as in the analysis performed in ref. [12] for the case of the AdS5 × T 1,1

background. Our approach is based on the existence of a matrix Γκ which depends on

the metric induced on the worldvolume of the probe and characterizes its supersymmetric

embeddings. Actually, if ε is a Killing spinor of the background, only those embeddings such

that Γκ ε = ε preserve some supersymmetry [19]. This kappa symmetry condition gives rise

to a set of first-order BPS differential equations whose solutions, if they exist, determine the

embedding of the probe and the fraction of the original background supersymmetry that it

preserves. The configurations found by solving these equations also solve the equations of

motion derived from the Dirac-Born-Infeld action of the probe and, actually, we will verify

that they saturate a bound for the energy, as it usually happens in the case of worldvolume

solitons [20].

The first case we study is that of D3-branes. We are able to find in this case the

three-cycles introduced in refs. [15, 16, 21] to describe the different dibaryonic operators of

the gauge theory. Moreover, we also find a general class of supersymmetric embeddings of

the D3-brane probe characterized by a certain local holomorphicity condition. Contrary to

what happens in the case of T 1,1, globally it turns out that these embeddings, in general, do

not define a three-cycle but a submanifold with boundaries. We also study the fluctuations

of the D3-brane probe around a dibaryonic configuration and we successfully match the

emerging results with those of the corresponding quiver theory. We also find stable non-

supersymmetric configurations of D3-branes wrapping a two-dimensional submanifold of

Y p,q that define a one dimensional object in the gauge theory that could be interpreted as

a fat string.

Our analysis continues with the study of D5-brane probes. We find embeddings in

which the D5-brane wraps a two-dimensional submanifold and creates a domain wall in

AdS5. When crossing these domain walls the rank of the gauge group factors of the quiver
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gets shifted [4], this leading to their identification as fractional branes [22]. We also study

other stable configurations that break supersymmetry completely but are nevertheless in-

teresting enough. One of these configurations is the baryon vertex, in which the D5-brane

wraps the entire Y p,q space. Besides, we also consider the case of D5-branes wrapping a

two-dimensional submanifold when a nonvanishing worldvolume flux is present as well as

the setting with D5-branes on three-cycles of Y p,q.

Finally we turn to the case of D7-brane probes. According to the original proposal of

ref. [23], the embeddings in which the D7-branes fill completely the gauge theory directions

are specially interesting. These spacetime filling configurations can be used as flavor branes,

i.e. as branes whose fluctuations can be identified with the dynamical mesons of the gauge

theory (see refs. [24]–[33] for the analysis of the meson spectrum in different theories).

Moreover, we show that the configurations in which the D7-brane wraps the entire Y p,q

are also supersymmetric.

The organization of the paper is as follows. In section 2 we review some properties

of the Y p,q space and the corresponding Calabi-Yau cone that we call CY p,q, including

the local complex coordinates of the latter. We discuss the corresponding type IIB super-

gravity solution and present the explicit form of its Killing spinors. We also present the

general condition satisfied by supersymmetric embeddings of D-brane probes on this back-

ground. Section 3 discusses embeddings of D3-branes on various supersymmetric cycles.

We reproduce the three-cycles considered previously in the literature and find a new family

of supersymmetric embeddings. Section 3 also contains an analysis of the excitations of

wrapped D3-branes and we find perfect agreement with the corresponding field theory re-

sults. Section 4 deals with supersymmetric D5-branes which behave as domain walls, while

in section 5 we discuss the spacetime filling embeddings of D7-branes. For completeness, we

consider other possible embeddings, such as the baryon vertex, in section 6. We conclude

and summarize our results in section 7.

2. The Y p,q space and brane probes

Let us consider a solution of IIB supergravity given by a ten-dimensional space whose

metric is of the form:

ds2 = ds2
AdS5

+ L2 ds2
Y p,q (2.1)

where ds2
AdS5

is the metric of AdS5 with radius L and ds2
Y p,q is the metric of the Sasaki-

Einstein space Y p,q, which can be written as [13, 14]:

ds2
Y p,q =

1 − cy

6
(dθ2 + sin2 θ dφ2) +

1

6H2(y)
dy2 +

H2(y)

6
(dβ − c cos θdφ)2

+
1

9
[dψ + cos θdφ + y(dβ − c cos θdφ) ]2 , (2.2)

H(y) being given by:

H(y) =

√

a − 3y2 + 2cy3

3(1 − cy)
. (2.3)

– 4 –



J
H
E
P
0
3
(
2
0
0
6
)
1
0
1

The metrics ds2
Y p,q are Sasaki-Einstein, which means that the cones CY p,q with metric

dr2 + r2ds2
Y p,q are Calabi-Yau manifolds. The metrics in these coordinates neatly display

some nice local features of these spaces. Namely, by writing it as

ds2
Y p,q = ds2

4 +

[

1

3
dψ + σ

]2

, (2.4)

it turns out that ds2
4 is a Kähler-Einstein metric with Kähler form J4 = 1

2dσ. Notice that

this is a local splitting that carries no global information. Indeed, the pair (ds2
4, J4) is not

in general globally defined. The Killing vector ∂
∂ψ has constant norm but its orbits do not

close (except for certain values of p and q, see below). It defines a foliation of Y p,q whose

transverse leaves, as we see, locally have a Kähler-Einstein structure. This aspect will be

important in later discussions.

These Y p,q manifolds are topologically S2 × S3 and can be regarded as U(1) bundles

over manifolds of topology S2 × S2. Its isometry group is SU(2) × U(1)2. Notice that the

metric (2.2) depends on two constants a and c. The latter, if different from zero, can be

set to one by a suitable rescaling of the coordinate y, although it is sometimes convenient

to keep the value of c arbitrary in order to be able to recover the T 1,1 geometry, which

corresponds to c = 0 1. If c 6= 0, instead, as we have just said we can set c = 1 and the

parameter a can be written in terms of two coprime integers p and q (we take p > q) as

follows:

a =
1

2
− p2 − 3q2

4p3

√

4p2 − 3q2 . (2.5)

Moreover, the coordinate y ranges between the two smaller roots of the cubic equation

Q(y) ≡ a − 3y2 + 2cy3 = 2c

3
∏

i=1

(y − yi) , (2.6)

i.e. y1 ≤ y ≤ y2 with (for c = 1):

y1 =
1

4p

(

2p − 3q −
√

4p2 − 3q2
)

< 0 ,

y2 =
1

4p

(

2p + 3q −
√

4p2 − 3q2
)

> 0 . (2.7)

In order to specify the range of the other variables appearing in the metric, let us introduce

the coordinate α by means of the relation:

β = −(6α + cψ) . (2.8)

Then, the coordinates θ, φ, ψ and α span the range:

0 ≤ θ ≤ π , 0 < φ ≤ 2π , 0 < ψ ≤ 2π , 0 < α ≤ 2π` , (2.9)

1If c = 0, we can set a = 3 by rescaling y → ξy, β → ξ−1β, and a → ξ2a. If we further write y = cos θ̃

and β = φ̃, and choose the period of ψ to be 4π, the metric goes to that of T 1,1.
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where ` is (generically an irrational number) given by:

` = − q

4p2 y1 y2
=

q

3q2 − 2p2 + p
√

4p2 − 3q2
, (2.10)

the metric (2.2) being periodic in these variables. Notice that, whenever c 6= 0, the coordi-

nate β is non-periodic: the periodicities of ψ and α are not congruent, unless the manifold

is quasi-regular, i.e., there exists a positive integer k such that

k2 = 4p2 − 3q2 . (2.11)

For quasi-regular manifolds, ds2
4 in (2.4) corresponds to a Kähler-Einstein orbifold. Notice

that ` becomes rational and it is now possible to assign a periodicity to ψ such that β ends

up being periodic. If we perform the change of variables (2.8) in (2.2), we get

ds2
Y p,q =

1 − cy

6
(dθ2 + sin2 θ dφ2) +

1

6H2(y)
dy2 +

v(y)

9
(dψ + cos θdφ)2 +

+ w(y) [dα + f(y) (dψ + cos θdφ) ]2 , (2.12)

with v(y), w(y) and f(y) given by

v(y) =
a − 3y2 + 2cy3

a − y2
, w(y) =

2(a − y2)

1 − cy
, f(y) =

ac − 2y + y2c

6(a − y2)
. (2.13)

Concerning the AdS5 space, we will represent it by means of four Minkowski coordi-

nates xα (α = 0, 1, 2, 3) and a radial variable r. In these coordinates, the AdS5 metric

takes the standard form:

ds2
AdS5

=
r2

L2
dx2

1,3 +
L2

r2
dr2 . (2.14)

The ten-dimensional metric (2.1) is then a solution of the equations of motion of type IIB

supergravity if, in addition, we have N units of flux of the self-dual Ramond-Ramond five-

form F (5). This solution corresponds to the near-horizon region of a stack of N coincident

D3-branes extended along the Minkowski coordinates and located at the apex of the CY p,q

cone. The explicit expression of F (5) is:

gs F (5) = d4x ∧ dh−1 + Hodge dual , (2.15)

where h(r) is the near-horizon harmonic function, namely:

h(r) =
L4

r4
. (2.16)

The quantization condition of the flux of F (5) determines the constant L in terms of gs,

N , α′ and the volume Vol(Y p,q) of the Sasaki-Einstein space:

L4 =
4π4

Vol(Y p,q)
gs N (α′)2 , (2.17)

where Vol(Y p,q) can be computed straightforwardly from the metric (2.2), with the result

(for c = 1):

Vol(Y p,q) =
q2

3p2

2p +
√

4p2 − 3q2

3q2 − 2p2 + p
√

4p2 − 3q2
π3 . (2.18)

– 6 –



J
H
E
P
0
3
(
2
0
0
6
)
1
0
1

UUUUU

V

Y Y

YY

Y

Y Z

Z

V

U

Y
Y

V

U

Z

U
U

Y

Figure 1: The basic cells σ (upper left) and τ (upper right). Y p,q quivers are built with q σ and

p−q τ unit cells. The cubic terms in the superpotential (2.19) come from closed loops of the former

and the quartic term arises from the latter. The quiver for Y 4,2 is given by σσ̃τ τ̃ (bottom).

2.1 Quiver theories for Y p,q spaces

The gauge theory dual to IIB on AdS5 × Y p,q is by now well understood. Here we quote

some of the results that are directly relevant to our discussion. We follow the presentation

of ref. [16].

The quivers for Y p,q can be constructed starting with the quiver of Y p,p which is

naturally related to the quiver theory obtained from C
3/Z2p. The gauge group is SU(N)2p

and the superpotential is constructed out of cubic and quartic terms in the four types of

bifundamental chiral fields present: two doublets Uα and V β and two singlets Y and Z of

a global SU(2). Namely,

W =

q
∑

i=1

εαβ(Uα
i V β

i Y2i−1 + V α
i Uβ

i+1Y2i) +

p
∑

j=q+1

εαβZjU
α
j+1Y2j−1U

β
j . (2.19)

Greek indices α, β = 1, 2 are in SU(2), and Latin subindices i, j refer to the gauge group

where the corresponding arrow originates. Equivalently, as explained in [21], the quiver

theory for Y p,q can be constructed from two basic cells denoted by σ and τ , and their

mirror images with respect to a horizontal axis, σ̃ and τ̃ (see figure 1). Gluing of cells has

to respect the orientation of double arrow lines corresponding to the U fields. For example,

the quiver Y 4,2 is given by σσ̃τ τ̃ . More concrete examples and further discussion can be

found in [16, 21].

Here we quote a result of [16] which we will largely reproduce using a study of wrapped

branes. The global U(1) symmetries corresponding to the factors appearing in the isometry

group of the Y p,q manifold are identified as the R-charge symmetry U(1)R and a flavor

symmetry U(1)F . There is also a baryonic U(1)B that becomes a gauge symmetry in

the gravity dual. The charges of all fields in the quiver with respect to these Abelian

symmetries is summarized in table 1.
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Field number R − charge U(1)B U(1)F

Y p + q
−4p2+3q2+2pq+(2p−q)

√
4p2−3q2

3q2 p − q −1

Z p − q
−4p2+3q2−2pq+(2p+q)

√
4p2−3q2

3q2 p + q +1

Uα p
2p(2p−

√
4p2−3q2)

3q2 −p 0

V β q
3q−2p+

√
4p2−3q2

3q q +1

Table 1: Charges for bifundamental chiral fields in the quiver dual to Y p,q [16].

It is worth noting that the above assignment of charges satisfies a number of conditions.

For example, the linear anomalies vanish Tr U(1)B = Tr U(1)F = 0, as well as the cubic

t’ Hooft anomaly Tr U(1)3B .

2.2 Complex coordinates on CY p,q

We expect some of the supersymmetric embeddings of probes that will be studied in the

present paper to be related to the complex coordinates describing CY p,q. The relevant

coordinates were introduced in [15]. (Here we follow the notation of [34].) The starting

point in identifying a good set of complex coordinates is the following set of closed one-

forms [15]:

η1 =
1

sin θ
dθ − idφ ,

η̃2 = − dy

H(y)2
− i(dβ − c cos θdφ) ,

η̃3 = 3
dr

r
+ i[dψ + cos θdφ + y(dβ − c cos θdφ)] , (2.20)

in terms of which, the metric of CY p,q can be rewritten as

ds2 = r2 (1 − cy)

6
sin2θ |η1|2 + r2 H(y)2

6
|η̃2|2 +

r2

9
|η̃3|2 . (2.21)

Unfortunately, η̃2 and η̃3 are not integrable. It is however easy to see that integrable

one-forms can be obtained by taking linear combinations of them:

η2 = η̃2 + c cos θ η1 , η3 = η̃3 + cos θ η1 + y η̃2 . (2.22)

We can now define ηi = dzi/zi for i = 1, 2, 3, where

z1 = tan
θ

2
e−iφ , z2 =

(sin θ)c

f1(y)
e−iβ , z3 = r3 sin θ

f2(y)
eiψ , (2.23)

with f1(y) and f2(y) being given by:

f1(y) = exp

(
∫

1

H(y)2
dy

)

, f2(y) = exp

(
∫

y

H(y)2
dy

)

. (2.24)
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By using the form of H(y) written in eq. (2.3) it is possible to provide a simpler expression

for the functions fi(y), namely:

1

f1(y)
=

√

(y − y1)
1

y1 (y2 − y)
1

y2 (y3 − y)
1

y3 ,

1

f2(y)
=

√

Q(y) =
√

2c
√

(y − y1) (y2 − y) (y3 − y) , (2.25)

where Q(y) has been defined in (2.6), y1 and y2 are given in eq. (2.7) and y3 is the third

root of the polynomial Q(y) which, for c = 1, is related to y1,2 as y3 = 3
2 − y1 − y2. The

holomorphic three-form of CY p,q simply reads

Ω = − 1

18
eiψr3

√

Q(y)

3
sin θ η1 ∧ η2 ∧ η3 = − 1

18
√

3

dz1 ∧ dz2 ∧ dz3

z1z2
. (2.26)

Notice that coordinates z1 and z2 are local complex coordinates on the transverse leaves

of Y p,q (2.4) with Kähler-Einstein metric ds2
4. They are not globally well-defined as soon

as z2 is periodic in β –which is not a periodic coordinate. Besides, they are meromorphic

functions on CY p,q (the function z1 is singular at θ = π while z2 has a singularity at

y = y1). A set of holomorphic coordinates on Y p,q was constructed in [35].

2.3 Killing spinors for AdS5 × Y p,q

The AdS5×Y p,q background preserves eight supersymmetries, in agreement with the N = 1

superconformal character of the corresponding dual field theory, which has four ordinary

supersymmetries and four superconformal ones. In order to verify this statement, and for

later use, let us write explicitly the form of the Killing spinors of the background, which

are determined by imposing the vanishing of the supersymmetric variations of the dilatino

and gravitino. The result of this calculation is greatly simplified in some particular basis of

frame one-forms, which we will now specify. In the AdS5 part of the metric we will choose

the natural basis of vielbein one-forms, namely:

exα

=
r

L
dxα , (α = 0, 1, 2, 3) , er =

L

r
. (2.27)

Moreover, in the Y p,q directions we will use the following frame:

e1 = − L√
6

1

H(y)
dy ,

e2 = − L√
6

H(y) (dβ − c cos θ dφ) ,

e3 =
L√
6

√

1 − c y dθ ,

e4 =
L√
6

√

1 − c y sin θ dφ,

e5 =
L

3
(dψ + y dβ + (1 − c y) cos θ dφ) . (2.28)
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In order to write the expressions of the Killing spinors in a compact form, let us define the

matrix Γ∗ as:

Γ∗ ≡ iΓx0x1x2x3 . (2.29)

Then, the Killing spinors ε of the AdS5 × Y p,q background can be written in terms of a

constant spinor η as 2:

ε = e−
i
2
ψ r−

Γ∗

2

(

1 +
Γr

2L2
xα Γxα (1 + Γ∗)

)

η . (2.30)

The spinor η satisfies the projections:

Γ12 η = −iη , Γ34 η = iη , (2.31)

which show that this background preserves eight supersymmetries. Notice that, since the

matrix multiplying η in eq. (2.30) commutes with Γ12 and Γ34, the spinor ε also satisfies

the conditions (2.31), i.e.:

Γ12 ε = −iε , Γ34 ε = iε . (2.32)

In eq. (2.30) we are parameterizing the dependence of ε on the coordinates of AdS5 as in

ref. [36]. In order to explore this dependence in detail, it is interesting to decompose the

constant spinor η according to the different eigenvalues of the matrix Γ∗:

Γ∗ η± = ±η± . (2.33)

Using this decomposition we obtain two types of Killing spinors:

e
i
2
ψ ε− = r1/2 η− ,

e
i
2
ψ ε+ = r−1/2 η+ +

r1/2

L2
Γr xα Γxα η+ . (2.34)

The four spinors ε− are independent of the coordinates xα and Γ∗ε− = −ε−, whereas

the ε+’s do depend on the xα’s and are not eigenvectors of Γ∗. The latter correspond to

the four superconformal supersymmetries, while the ε−’s correspond to the ordinary ones.

Notice also that the only dependence of these spinors on the coordinates of the Y p,q space

is through the exponential of the angle ψ in eq. (2.34).

In addition to the Poincare coordinates (xα, r) used above to represent the AdS5 metric,

it is also convenient to write it in the so-called global coordinates, in which ds2
AdS5

takes

the form:

ds2
AdS5

= L2
[

− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2
3

]

, (2.35)

where dΩ2
3 is the metric of a unit three-sphere parameterized by three angles (α1, α2, α3):

dΩ2
3 = (dα1)2 + sin2 α1

(

(dα2)2 + sin2 α2 (dα3)2
)

, (2.36)

2Note that this spinor differs from the one of [12] by a rotation generated by e−
i

2
ψ Γ34 . This rotation

accounts for the difference between both frames.
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with 0 ≤ α1, α2 ≤ π and 0 < α3 ≤ 2π. In order to write down the Killing spinors in these

coordinates, we will choose the same frame as in eq. (2.28) for the Y p,q part of the metric,

while for the AdS5 directions we will use:

eτ = L cosh ρ dτ , eρ = Ldρ ,

eα1

= L sinh ρ dα1 ,

eα2

= L sinh ρ sin α1 dα2 ,

eα3

= L sinh ρ sin α1 sin α2 dα3 . (2.37)

If we now define the matrix

γ∗ ≡ Γτ Γρ Γα1 α2 α3 , (2.38)

then, the Killing spinors in these coordinates can be written as [37]:

ε = e−
i
2
ψ e−i ρ

2
Γργ∗ e−i τ

2
Γτ γ∗ e−

α1

2
Γ

α1ρ e−
α2

2
Γ

α2α1 e−
α3

2
Γ

α3α2 η , (2.39)

where η is a constant spinor that satisfies the same conditions as in eq. (2.31).

2.4 Supersymmetric probes on AdS5 × Y p,q

In the remainder of this paper we will consider Dp-brane probes moving in the AdS5×Y p,q

background. If ξµ (µ = 0, . . . , p) are a set of worldvolume coordinates and XM denote ten-

dimensional coordinates, the embedding of the brane probe in the background geometry

will be characterized by the set of functions XM (ξµ), from which the induced metric on

the worldvolume is determined as:

gµν = ∂µXM ∂νXN GMN , (2.40)

where GMN is the ten-dimensional metric. Let eM be the frame one-forms of the ten-

dimensional metric. These one-forms can be written in terms of the differentials of the

coordinates by means of the coefficients E
M
N :

eM = E
M
N dXN . (2.41)

From the E
M
N ’s and the embedding functions XM (ξµ) we define the induced Dirac matrices

on the worldvolume as:

γµ = ∂µ XM E
N
M ΓN , (2.42)

where ΓN are constant ten-dimensional Dirac matrices.

The supersymmetric embeddings of the brane probes are obtained by imposing the

kappa-symmetry condition:

Γκ ε = ε , (2.43)

where ε is a Killing spinor of the background and Γκ is a matrix that depends on the

embedding. In order to write the expression of Γκ for the type IIB theory it is convenient
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to decompose the complex spinor ε in its real and imaginary parts, ε1 and ε2. These are

Majorana-Weyl spinors. They can be subsequently arranged as a two-dimensional vector

ε = ε1 + iε2 ←→ ε =

(

ε1

ε2

)

. (2.44)

The dictionary to go from complex to real spinors is straightforward, namely:

ε∗ ←→ τ3 ε , iε∗ ←→ τ1 ε , iε ←→ − iτ2 ε , (2.45)

where the τi (i = 1, 2, 3) are nothing but the Pauli matrices. If there are not worldvolume

gauge fields on the D-brane, the kappa symmetry matrix of a Dp-brane in the type IIB

theory is given by [18]:

Γκ =
1

(p + 1)!
√−g

εµ1···µp+1 (τ3)
p−3

2 iτ2 ⊗ γµ1···µp+1
, (2.46)

where g is the determinant of the induced metric gµν and γµ1···µp+1
denotes the antisym-

metrized product of the induced Dirac matrices (2.42). To write eq. (2.46) we have assumed

that the worldvolume gauge field A is zero. This assumption is consistent with the equa-

tions of motion of the probe as far as there are no source terms in the action which could

induce a non-vanishing value of A. These source terms must be linear in A and can only

appear in the Wess-Zumino term of the probe action, which is responsible for the coupling

of the probe to the Ramond-Ramond fields of the background. In the case under study

only F (5) is non-zero (see eq. (2.15)) and the only linear term in A is of the form
∫

A∧F (5),

which is different from zero only for a D5-brane which captures the flux of F (5). This only

happens for the baryon vertex configuration studied in subsection 6.5. In all other cases

studied in this paper one can consistently put the worldvolume gauge field to zero. Nev-

ertheless, even if one is not forced to do it, in some cases we can switch on the field A to

study how this affects the supersymmetric embeddings. In these cases the expression (2.46)

for Γκ is no longer valid and we must use the more general formula given in ref. [18].

The kappa symmetry condition Γκ ε = ε imposes a new projection to the Killing spinor

ε which, in general, will not be compatible with those already satisfied by ε (see eq. (2.32)).

This is so because the new projections involve matrices which do not commute with those

appearing in (2.32). The only way of making these two conditions consistent with each

other is by requiring the vanishing of the coefficients of those non-commuting matrices,

which will give rise to a set of first-order BPS differential equations. By solving these BPS

equations we will determine the supersymmetric embeddings of the brane probes we are

looking for. Notice also that the kappa symmetry condition must be satisfied at any point

of the probe worldvolume. It is a local condition whose global meaning, as we will see in

a moment, has to be addressed a posteriori. This requirement is not obvious at all since

the spinor ε depends on the coordinates (see eqs. (2.30) and (2.39)). However this would

be guaranteed if we could reduce the Γκ ε = ε projection to some algebraic conditions on

the constant spinor η of eqs. (2.30) and (2.39). The counting of solutions of the algebraic

equations satisfied by η will give us the fraction of supersymmetry preserved by our brane

probe.
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3. Supersymmetric D3-branes on AdS5 × Y p,q

Let us now apply the methodology just described to find the supersymmetric configurations

of a D3-brane in the AdS5 × Y p,q background. The kappa symmetry matrix in this case

can be obtained by putting p = 3 in the general expression (2.46):

Γκ = − i

4!
√−g

εµ1···µ4 γµ1···µ4
, (3.1)

where we have used the rule (2.45) to write the expression of Γκ acting on complex spinors.

Given that the Y p,q space is topologically S2 × S3, it is natural to consider D3-branes

wrapping two- and three-cycles in the Sasaki-Einstein space. A D3-brane wrapping a two-

cycle in Y p,q and extended along one of the spatial directions of AdS5 represents a fat

string. We will study such type of configurations in section 6 where we conclude that they

are not supersymmetric, although we will find stable non-supersymmetric embeddings of

this type.

In this section we will concentrate on the study of supersymmetric configurations of

D3-branes wrapping a three-cycle of Y p,q. These objects are pointlike from the gauge theory

point of view and, on the field theory side, they correspond to dibaryons constructed from

the different bifundamental fields. In what follows we will study the kappa symmetry

condition for two different sets of worldvolume coordinates, which will correspond to two

classes of cycles and dibaryons.

3.1 Singlet supersymmetric three-cycles

Let us use the global coordinates of eq. (2.35) to parameterize the AdS5 part of the metric

and let us consider the following set of worldvolume coordinates:

ξµ = (τ, θ, φ, β), (3.2)

and the following generic ansatz for the embedding:

y = y(θ, φ, β), ψ(θ, φ, β). (3.3)

The kappa symmetry matrix in this case is:

Γκ = −iL
cosh ρ√−g

Γτ γθφβ . (3.4)

The induced gamma matrices along the θ, φ and β directions can be straightforwardly

obtained from (2.42), namely:

1

L
γθ =

√
1 − c y√

6
Γ3 +

1

3
ψθ Γ5 −

1√
6 H

yθ Γ1,

1

L
γφ =

cH cos θ√
6

Γ2 +

√
1 − c y√

6
sin θ Γ4 +

1

3
(ψφ + (1 − c y) cos θ) Γ5 −

1√
6 H

yφ Γ1,

1

L
γβ = − H√

6
Γ2 +

1

3
(ψβ + y) Γ5 −

1√
6H

yβ Γ1, (3.5)
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where the subscripts in y and ψ denote partial differentiation. By using this result and the

projections (2.32) the action of the antisymmetrized product γθφβ on the Killing spinor ε

reads:

− i

L3
γθφβ ε = [a5 Γ5 + a1Γ1 + a3Γ3 + a135 Γ135 ]ε , (3.6)

where the coefficients on the right-hand side are given by:

a5 =
1

18

[

(y + ψβ) [(1 − cy) sin θ + c yθ cos θ] +

+ [ψφ + (1 − cy) cos θ ]yθ − ψθyφ − c cos θψθyβ

]

,

a1 = −1 − cy

6
√

6
sin θ

[

yβ

H
− iH

]

,

a3 = −
√

1 − cy

6
√

6
[yφ + c cos θyβ − i sin θyθ ] ,

a135 =

√
1 − cy

18

[

sin θ

H
[ψθyβ − (y + ψβ) yθ] + H[ψφ + (1 + cψβ) cos θ] +

+
i

H

[

(ψφ + (1 − cy) cos θ)yβ − (y + ψβ) yφ

]

− iH sin θψθ

]

. (3.7)

As discussed at the end of section 2, in order to implement the kappa symmetry projection

we must require the vanishing of the terms in (3.6) which are not compatible with the

projection (2.32). Since the matrices Γ1, Γ3 and Γ135 do not commute with those appearing

in the projection (2.32), it follows that we must impose that the corresponding coefficients

vanish, i.e.:

a1 = a3 = a135 = 0 . (3.8)

Let us concentrate first on the condition a1 = 0. By looking at its imaginary part:

H(y) = 0 , (3.9)

which, in the range of allowed values of y, means:

y = y1 , or y = y2 . (3.10)

If H(y) = 0, it follows by inspection that a1 = a3 = a135 = 0. Notice that ψ can be an

arbitrary function. Moreover, one can check that:

√−g
∣

∣

BPS
= L4 cosh ρ a5|BPS . (3.11)

Thus, one has the following equality:

Γκ ε|BPS = ΓτΓ5 ε , (3.12)

and, therefore, the condition Γκε = ε becomes equivalent to

ΓτΓ5 ε = ε . (3.13)
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As it happens in the T 1,1 case [12], the compatibility of (3.13) with the AdS5 structure of

the spinor implies that the D3-brane must be placed at ρ = 0, i.e. at the center of AdS5.

Indeed, as discussed at the end of section 2, we must translate the condition (3.13) into

a condition for the constant spinor η of eq. (2.39). Notice that ΓτΓ5 commutes with all

the matrices appearing on the right-hand side of eq. (2.39) except for Γργ∗. Since the

coefficient of Γργ∗ in (2.39) only vanishes for ρ = 0, it follows that only at this point the

equation Γκ ε = ε can be satisfied for every point in the worldvolume and reduces to:

ΓτΓ5 η = η . (3.14)

Therefore, if we place the D3-brane at the center of the AdS5 space and wrap it on the

three-cycles at y = y1 or y = y2, we obtain a 1
8 supersymmetric configuration which

preserves the Killing spinors of the type (2.39) with η satisfying (2.31) and the additional

condition (3.14).

The cycles we have just found have been identified by Martelli and Sparks as those

dual to the dibaryonic operators det(Y ) and det(Z), made out of the bifundamental fields

that, as the D3-brane wraps the two-sphere whose isometries are responsible for the global

SU(2) group, are singlets under this symmetry [15]. For this reason we will refer to these

cycles as singlet (S) cycles. Let us recall how this identification is carried out. First of all,

we look at the conformal dimension ∆ of the corresponding dual operator. Following the

general rule of the AdS/CFT correspondence (and the zero-mode corrections of ref. [5]),

∆ = LM , where L is given by (2.17) and M is the mass of the wrapped three-brane.

The latter can be computed as M = T3 V3, with T3 being the tension of the D3-brane

(1/T3 = 8π3(α′)2gs) and V3 the volume of the three-cycle. If gC is the determinant of the

spatial part of the induced metric on the three-cycle C, one has:

V3 =

∫

C

√
gC d3ξ . (3.15)

For the singlet cycles Si at y = yi (i = 1, 2) and ψ=constant, the volume V3 is readily

computed, namely:

V Si

3 =
2L3

3
(1 − cyi) | yi | (2π)2 ` . (3.16)

Let us define λ1 = +1, λ2 = −1. Then, if ∆S
i ≡ ∆Si , one has:

∆S
i =

N

2q2

[

− 4p2 + 3q2 + 2λi pq + (2p − λi q)
√

4p2 − 3q2
]

. (3.17)

As it should be for a BPS saturated object, the R-charges Ri of the Si cycles are related to

∆S
i as Ri = 2

3 ∆S
i . By comparing the values of Ri with those determined in [16] from the

gauge theory dual (see table 1) one concludes that, indeed, a D3-brane wrapped at y = y1

(y = y2) can be identified with the operator det(Y ) (det(Z)) as claimed. Another piece of

evidence which supports this claim is the calculation of the baryon number, that can be

identified with the third homology class of the three-cycle C over which the D3-brane is

wrapped. This number (in units of N) can be obtained by computing the integral over C
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of the pullback of a (2, 1) three-form Ω2,1 on CY p,q:

B(C) = ±i

∫

C
P [Ω2,1]C , (3.18)

where P [· · ·]C denotes the pullback to the cycle C of the form that is inside the brackets.

The sign of the right-hand side of (3.18) depends on the orientation of the cycle. The

explicit expression of Ω2,1 has been determined in ref. [21]:

Ω2,1 = K
(dr

r
+

i

L
e5

)

∧ ω , (3.19)

where e5 is the one-form of our vielbein (2.28) for the Y p,q space, K is the constant

K =
9

8π2
(p2 − q2) , (3.20)

and ω is the two-form:

ω = − 1

(1 − cy)2 L2

[

e1 ∧ e2 + e3 ∧ e4
]

. (3.21)

Using (θ, φ, β) as worldvolume coordinates of the singlet cycles Si,

P [Ω2,1]Si
= −i

K

18

yi

1 − cyi
sin θ dθ ∧ dφ ∧ dβ , (3.22)

Then, changing variables from β to α by means of (2.8), and taking into account that

α ∈ [0, 2π`], one gets:
∫

Si

P [Ω2,1]Si
= −i

8π2

3

K`yi

1 − cyi
. (3.23)

After using the values of y1 and y2 displayed in (2.7), we arrive at:

B(S1) = −i

∫

S1

P [Ω2,1]S1
= p − q ,

B(S2) = i

∫

S2

P [Ω2,1]S2
= p + q . (3.24)

Notice the perfect agreement of B(S1) and B(S2) with the baryon numbers of Y and Z

displayed in table 1.

3.2 Doublet supersymmetric three-cycles

Let us now try to find supersymmetric embeddings of D3-branes on three-cycles by using

a different set of worldvolume coordinates. As in the previous subsection it is convenient

to use the global coordinates (2.35) for the AdS5 part of the metric and the following set

of worldvolume coordinates:

ξµ = (τ, y, β, ψ) . (3.25)

Moreover, we will adopt the ansatz:

θ(y, β, ψ) , φ(y, β, ψ) . (3.26)
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The kappa symmetry matrix Γκ in this case takes the form:

Γκ = −iL
cosh ρ√−g

Γτ γy β ψ , (3.27)

and the induced gamma matrices are:

1

L
γy = − 1√

6H
Γ1 +

cH cos θ√
6

φyΓ2 +

√
1 − cy√

6
(θyΓ3 + φy sin θ Γ4) +

1 − c y

3
cos θφy Γ5 ,

1

L
γβ =

H√
6

(−1 + c cos θ φβ) Γ2 +

√
1 − c y√

6
θβ Γ3 +

√
1 − c y√

6
sin θ φβ Γ4

+
1

3

(

y + (1 − c y) cos θ φβ

)

Γ5 , (3.28)

1

L
γψ =

cH cos θ√
6

φψ Γ2 +

√
1 − c y√

6
(θψ Γ3 + sin θ φψ Γ4) +

1

3
(1 + (1 − c) cos θφψ) Γ5 .

By using again the projections (2.32) one easily gets the action of γy β ψ on the Killing

spinor

− i

L3
γy β ψ ε = [c5 Γ5 + c1 Γ1 + c3 Γ3 + c135 Γ135]ε , (3.29)

where the different coefficients appearing on the right-hand side of (3.29) are given by:

c5 =
1

18

[

− 1 − cos θ(φψ − cφβ) + (1 − cy) sin θ
[

θy(φβ − yφψ) − φy(θβ − yθψ)
]

]

,

c1 = −1 − cy

6
√

6
sin θ

[θβφψ − θψφβ

H
+ iH (θyφψ − θψφy)

]

,

c3 = −
√

1 − cy

6
√

6

[

θψ − c cos θ (θψφβ − θβφψ) + i sin θφψ

]

,

c135 = −
√

1 − cy

18

[

sin θ

H
(φβ − yφψ) + H

(

θy + cos θ

[

θy(φψ − cφβ) − φy(θψ − cθβ)

])

+iH sin θ φy −
i

H

[

θβ − yθψ + (1 − cy) cos θ(θβφψ − θψφβ)
]

]

. (3.30)

Again, we notice that the matrices Γ1, Γ3 and Γ135 do not commute with the projec-

tions (2.32). We must impose:

c1 = c3 = c135 = 0 . (3.31)

From the vanishing of the imaginary part of c3 we obtain the condition:

sin θ φψ = 0 . (3.32)

One can solve the condition (3.32) by taking sin θ = 0, i.e. for θ = 0, π. By inspection one

easily realizes that c1, c3 and c135 also vanish for these values of θ and for an arbitrary

function φ(y, β, ψ). Therefore, we have the solution

θ = 0, π , φ = φ(y, β, ψ) . (3.33)

– 17 –



J
H
E
P
0
3
(
2
0
0
6
)
1
0
1

Another possibility is to take φψ = 0. In this case one readily verifies that c1 and c3 vanish

if θψ = 0. Thus, let us assume that both φ and θ are independent of the angle ψ. From

the vanishing of the real and imaginary parts of c135 we get two equations for the functions

θ = θ(y, β) and φ = φ(y, β), namely:

θy +
sin θ

H2
φβ + c cos θ (φy θβ − θy φβ) = 0 ,

θβ − H2 sin θφy = 0 . (3.34)

If the BPS equations (3.34) hold, one can verify that the kappa symmetry condition Γκ ε = ε

reduces, up to a sign, to the projection (3.13) for the Killing spinor. As in the case of the S

three-cycles studied in subsection 3.1, by using the explicit expression (2.39) of ε in terms of

the global coordinates of AdS5, one concludes that the D3-brane must be placed at ρ = 0.

The corresponding configuration preserves four supersymmetries.

In the next subsection we will tackle the problem of finding the general solution of the

system (3.34). Here we will analyze the trivial solution of this system, namely:

θ = constant , φ = constant . (3.35)

This kind of three-cycle was studied in ref. [21] by Herzog, Ejaz and Klebanov (see also [16]),

who showed that it corresponds to dibaryons made out of the SU(2) doublet fields Uα. In

what follows we will refer to it as doublet (D) cycle. Let us review the arguments leading

to this identification. First of all, the volume of the D cycle (3.35) can be computed with

the result:

V D
3 =

L3

3
(2π)2 (y2 − y1) ` . (3.36)

By using the values of y1 and y2 (eq. (2.7)), L (eq. (2.17)) and ` (eq. (2.10)) we find the

following value of the conformal dimension:

∆D = N
p

q2

(

2p −
√

4p2 − 3q2
)

. (3.37)

By comparison with table 1, one can verify that the corresponding R-charge, namely

2/3∆D , is equal to the R-charge of the field Uα multiplied by N . We can check this

identification by computing the baryon number. Since, in this case, the pullback of Ω2,1 is:

P [Ω2,1]D = i
K

3(1 − cy)2
dy ∧ dα ∧ dψ (3.38)

we get:

B(D) = −i

∫

D
P [Ω2,1]D = −p , (3.39)

which, indeed, coincides with the baryon number of Uα written in table 1.

3.2.1 General integration

Let us now try to integrate in general the first-order differential system (3.34). With

this purpose it is more convenient to describe the locus of the D3-brane by means of two
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functions y = y(θ, φ), β = β(θ, φ). Notice that this is equivalent to the description used

so far (in which the independent variables were (y, β)), except for the cases in which (θ, φ)

or (y, β) are constant. The derivatives in these two descriptions are related by simply

inverting the Jacobian matrix, i.e.:

(

yθ yφ

βθ βφ

)

=

(

θy θβ

φy φβ

)−1

. (3.40)

By using these equations the first-order system (3.34) is equivalent to:

βθ =
yφ

H2 sin θ
, βφ = c cos θ − sin θ

H2
yθ . (3.41)

These equations can be obtained directly by using θ and φ as worldvolume coordinates.

Interestingly, in this form the BPS equations can be written as Cauchy-Riemann equations

and, thus, they can be integrated in general. This is in agreement with the naive expec-

tation that, at least locally, these equations should determine some kind of holomorphic

embeddings. In order to verify this fact, let us introduce new variables u1 and u2, related

to θ and y as follows:

u1 = log

(

tan
θ

2

)

, u2 = log

(

(sin θ)c

f1(y)

)

. (3.42)

By comparing the above expressions with the definitions of z1 and z2 in eq. (2.23), one

gets:

u1 − iφ = log z1 , u2 − iβ = log z2 . (3.43)

The relation between u1 and θ leads to du1 = dθ/ sin θ, from which it follows that:

∂u2

∂u1
= c cos θ − sin θ

H2
yθ ,

∂β

∂u1
= sin θ βθ , (3.44)

and it is easy to demonstrate that the BPS equations (3.41) can be written as:

∂u2

∂u1
=

∂β

∂φ
,

∂u2

∂φ
= − ∂β

∂u1
, (3.45)

these being the Cauchy-Riemann equations for the variables u2− iβ = log z2 and u1− iφ =

log z1. Then, the general integral of the BPS equations is

log z2 = f(log z1) , (3.46)

where f is an arbitrary (holomorphic) function of log z1. By exponentiating eq. (3.46) one

gets that the general solution of the BPS equations is a function z2 = g(z1), in which z2

is an arbitrary holomorphic function of z1. This result is analogous to what happened

for T 1,1 [12]. The appearance of a holomorphic function in the local complex coordinates

z1 and z2 is a consequence of kappa symmetry or, in other words, supersymmetry. But

one still has to check that this equation makes sense globally. We will come to this point

shortly. The simplest case is that in which log z2 depends linearly on log z1, namely

log z2 = n(log z1) + const. , (3.47)
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where n is a constant. By exponentiating this equation we get a relation between z2 and

z1 of the type:

z2 = C zn
1 , (3.48)

where C is a complex constant. If we represent this constant as C = Ce−iβ0, the embed-

ding (3.48) reduces to the following real functions β = β(φ) and y = y(θ):

β = nφ + β0 ,

f1(y) = C
( sin θ)c

(

tan θ
2

)n . (3.49)

This is a nontrivial embedding of a probe D3-brane on AdS5 × Y p,q. Notice that in the

limit c → 0 one recovers the results of [12]. For c 6= 0, a key difference arises. As we

discussed earlier, z2 is not globally well-defined in CY p,q due to its dependence on β. As

a consequence, eqs. (3.48)–(3.49) describe a kappa-symmetric embedding for the D3-brane

on Y p,q but it does not correspond to a wrapped brane. The D3-brane spans a submanifold

with boundaries.3 The only solution corresponding to a probe D3-brane wrapping a three-

cycle is z1 = const. which is the one obtained in the preceding subsection.

In order to remove β while respecting holomorphicity 4, we seem to be forced to let

z3 enter into the game. The reason is simple, any dependence in β disappears if z2 enters

through the product z2z3. This would demand embeddings involving the radius that we did

not consider. In this respect, it is interesting to point out that this is also the conclusion

reached in [35] from a different perspective: there, the complex coordinates corresponding

to the generators of the chiral ring are deduced and it turns out that all of them depend on

z1, z2z3 and z3. It would be clearly desirable to understand these generalized wrapped D3-

branes in terms of algebraic geometry, following the framework of ref. [11] which, in the case

of the conifold, emphasizes the use of global homogeneous coordinates. Unfortunately, the

relation between such homogeneous coordinates and the chiral fields of the quiver theory

is more complicated in the case of CY p,q.

3.3 The calibrating condition

Let us now verify that the BPS equations we have obtained ensure that the three-dimensional

submanifolds we have found are calibrated. First, recall that the metric of the Y p,q manifold

3In this respect, notice that it might happen that global consistency forces, through boundary conditions,

the D3-brane probes to end on other branes.
4One might think that a possible caveat to this problem is to choose a different slicing of Y p,q as the

one in (2.12), where the metric is written as a U(1) bundle coordinatized by α (the base not being a

Kähler-Einstein manifold). The complex coordinates of the slice are

z̃1 = z1 , z̃2 = G(y) sin θeiψ , (3.50)

where G′(y)/G(y) = 3/
p

w(y)q(y). However, a ‘holomorphic’ ansatz of the form z̃1 = z̃m
2 would be related

to an embedding of the form φ = φ(ψ) and θ = θ(y), which is a particular case of (3.26) albeit it is not

kappa symmetric. These complex coordinates z̃1 and z̃2 have nothing to do with the complex structure of

the Calabi-Yau manifold and, as such, kappa symmetry is not going to lead to a holomorphic embedding

in terms of them.
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can be written as (2.4),

ds2
Y p,q = ds2

4 +

[

1

3
dψ + σ

]2

,

where σ is a one-form given by

σ =
1

3
[ cos θdφ + y(dβ − c cos θdφ)] . (3.51)

The Kähler form J4 of the four-dimensional Kähler-Einstein space is just

J4 =
1

2
dσ =

1

L2
[e1 ∧ e2 − e3 ∧ e4] , (3.52)

where the ei’s are the forms of the vielbein (2.28). From the Sasaki-Einstein space Y p,q

we can construct the Calabi-Yau cone CY p,q, whose metric is just given by: ds2
CY p,q =

dr2 + r2 ds2
Y p,q . The Kähler form J of CY p,q is just:

J = r2 J4 +
r

L
dr ∧ e5 , (3.53)

whose explicit expression in terms of the coordinates is:

J = −r2

6
(1− cy) sin θdθ∧dφ+

1

3
rdr∧ (dψ +cos θdφ)+

1

6
d(r2y)∧ (dβ− c cos θdφ) . (3.54)

Given a three-submanifold in Y p,q one can construct its cone D, which is a four-dimensional

submanifold of CY p,q. The calibrating condition for a supersymmetric four-submanifold D
of CY p,q is just:

P
[1

2
J ∧ J

]

D
= Vol(D) , (3.55)

where Vol(D) is the volume form of the divisor D. Let us check that the condition (3.55)

is indeed satisfied by the cones constructed from our three-submanifolds. In order to verify

this fact it is more convenient to describe the embedding by means of functions y = y(θ, φ)

and β = β(θ, φ). The corresponding BPS equations are the ones written in (3.41). By using

them one can verify that the induced volume form for the three-dimensional submanifold is:

vol =
1

18

∣

∣

∣
(1 − cy) sin θ + c cos θyθ + βθyφ − yθβφ

∣

∣

∣

BPS
dθ ∧ dφ ∧ dψ . (3.56)

By computing the pullback of J ∧ J one can verify that the calibrating condition (3.55) is

indeed satisfied for:

Vol(D) = −r3 dr ∧ vol , (3.57)

which is just the volume form of D with the metric ds2
CY p,q having a particular orientation.

Eq. (3.55) is also satisfied for the cones constructed from the singlet and doublet three-

cycles of sections 3.1 and 3.2. This fact is nothing but the expression of the local nature

of supersymmetry.
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3.4 Energy bound

The dynamics of the D3-brane probe is governed by the Dirac-Born-Infeld lagrangian that,

for the case in which there are not worldvolume gauge fields, reduces to:

L = −√−g , (3.58)

where we have taken the D3-brane tension equal to one. We have checked that any solution

of the first-order equations (3.34) or (3.41) also satisfies the Euler-Lagrange equations

derived from the lagrangian density (3.58). Moreover, for the static configurations we are

considering here the hamiltonian density H is, as expected, just H = −L. We are now

going to verify that this energy density satisfies a bound, which is just saturated when the

BPS equations (3.34) or (3.41) hold. In what follows we will take θ and φ as independent

variables. For an arbitrary embedding of a D3-brane described by two functions β = β(θ, φ)

and y = y(θ, φ) one can show that H can be written as:

H =
√

Z2 + Y2 + W2 , (3.59)

where Z, Y and W are given by:

Z =
L4

18

[

(1 − cy) sin θ + c cos θyθ + yφβθ − yθβφ

]

,

Y =
L4

18

√

1 − cy H

[

βφ − c cos θ +
sin θ

H2
yθ

]

,

W =
L4

18

√

1 − cy H

[

sin θ βθ −
yφ

H2

]

. (3.60)

Obviously one has:

H ≥ |Z| . (3.61)

Moreover, since

Y|BPS
= W|BPS

= 0 , (3.62)

the bound saturates when the BPS equations (3.41) are satisfied. Thus, the system of

differential equations (3.41) is equivalent to the condition H = | Z| (actually Z ≥ 0 if

the BPS equations (3.41) are satisfied). Moreover, for an arbitrary embedding Z can be

written as a total derivative, namely:

Z =
∂

∂θ
Zθ +

∂

∂φ
Zφ . (3.63)

This result implies that H is bounded by the integrand of a topological charge. The explicit

form of Zθ and Zφ is:

Zθ = −L4

18

[

(1 − cy) cos θ + y βφ

]

,

Zφ =
L4

18
y βθ . (3.64)

In this way, from the point of view of the D3-branes, the configurations satisfying eq. (3.41)

can be regarded as BPS worldvolume solitons.
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3.5 BPS fluctuations of dibaryons

In this section we study BPS fluctuations of dibaryon operators in the Y p,q quiver theory.

We start with the simplest dibaryon which is singlet under SU(2), say detY . To con-

struct excited dibaryons we should replace one of the Y factors by any other chiral field

transforming in the same representation of the gauge groups. For example, replacing Y by

Y UαV βY , we get a new operator of the form

ε1ε
2(Y UαV βY )Y · · · Y , (3.65)

where ε1 and ε2 are abbreviations for the completely anti-symmetric tensors for the respec-

tive SU(N) factors of the gauge group. Using the identity

εa1···aN εb1···bN
=

∑

σ

(−1)σδa1

σ(b1) · · · δ
aN

σ(bN ) , (3.66)

the new operator we get can factorize into the original dibaryon and a single-trace operator

Tr(UαV βY ) detY . (3.67)

Indeed for singlet dibaryons, a factorization of this sort always works. This fact seems to

imply, at least at weak coupling, that excitation of a singlet dibaryon can be represented

as graviton fluctuations in the presence of the original dibaryon.

For the case of dibaryon with SU(2) quantum number the situation is different. Con-

sider, for simplicity, the state with maximum J3 of the SU(2)

ε1ε
2(U1 · · ·U1) = detU1, (3.68)

we can replace one of U1 factors by U1 O, where O is some operator given by a closed loop

in the quiver. As the case of singlet dibaryon, this kind of excitation is factorizable since all

SU(2) indices are symmetric. So this kind of operator should be identified with a graviton

excitation with wrapped D3-brane in the dual string theory. However if the SU(2) index of

the U field is changed in the excitation, i.e. U1 → U2 O, then the resulting operator cannot

be written as a product of the original dibaryon and a meson-like operator. Instead it has

to be interpreted as a single particle state in AdS. Since the operator also carries the same

baryon number, the natural conclusion is that the one-particle state is a BPS excitation of

the wrapped D3-brane corresponding to the dibaryon [5].

In order to classify all these BPS excitations of the dibaryon, we have to count all

possible inequivalent chiral operators O that transform in the bifundamental representation

of one of the gauge group factors of the theory. In Y p,q quiver gauge theory, these operators

correspond to loops in the quiver diagram just like the mesonic chiral operators discussed

in [38]. The simplest ones are operators with R-charge 2. They have been thoroughly

discussed in [39]. They are given by short loops of length 3 or 4 in the quiver, precisely as

those operators entering in the superpotential (2.19). They are single trace operators of the

form (in what follows we omit the trace and the SU(2) indices) UV Y , V UY or Y UZU (see

the upper quiver in figure 2). Since they are equivalent in the chiral ring, we can identify
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Figure 2: Loops in the Y 4,2 quiver representing mesonic operators in the chiral ring. There

are short loops such as UV Y , V UY or Y UZU (upper), longest loops as V UV UZUZU (middle)

and long loops like Y UY Y Y U (bottom). The representative of each class in the chiral ring is,

respectively, O1, O2 and O3.

them as a single operator O1. It transforms in the spin 1
2 ⊗ 1

2 = 0⊕ 1 representation of the

global SU(2). The scalar component vanishes in the chiral ring. Thus, we end up with a

spin 1 chiral operator with scaling dimension ∆ = 3. Its U(1)F charge vanishes.

There are also two classes of long loops in the quiver. The first class, whose represen-

tative is named O2, has length 2p, winds the quiver from the left to the right and is made

of p U type operators, q V type operators and p − q Z type operators. For example, in

Y 4,2, a long loop of this class is V UV UZUZU (middle quiver in figure 2). It transforms

in the spin 1
2 ⊗ · · · ⊗ 1

2 = p+q
2 ⊕ · · · representation of SU(2). The dots amount to lower

dimensional representations that vanish in the chiral ring. The resulting operator, O2, has

spin p+q
2 . There is another class of long loops which has length 2p − q, running along the

quiver in the opposite direction, build with p Y type operators and p− q U type operators.

We name its representative as O3. In the case of Y 4,2, it is an operator like Y UY Y Y U

(bottom quiver in figure 2). SU(2) indices, again, have to be completely symmetrized, the

spin being p−q
2 . Long loops wind around the quiver and this leads to a nonvanishing value

of QF [38]. The baryonic charge vanishes for any of these loops. We summarize in table 2

the charge assignments for the three kinds of operators Oi [38]. We can see that these

operators satisfy the BPS condition ∆ = 3
2 QR. In fact, they are the building blocks of all

other scalar BPS operators. The general BPS excitation corresponds to operators of the
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Operator QR QF Spin

O1 2 0 1

O2 p + q − 1
3` p p+q

2

O3 p − q + 1
3` −p p−q

2

Table 2: Charges assignments for the mesonic operators Oi that generate the chiral ring.

form

O =

3
∏

i=1

O ni

i . (3.69)

It is interesting to notice that the spectrum of fluctuations of a dibaryon must coincide with

the mesonic chiral operators in the Y p,q quiver theory. This would provide a nontrivial test

of the AdS/CFT correspondence. We show this result explicitly via an analysis of open

string fluctuation on wrapped D3-branes.

Now we are interested in describing the excitations of dibaryon operators from the dual

string theory. For those excitations that are factorizable, the dual configurations are just

the multi-particle states of graviton excitations in the presence of a dibaryon. The corre-

spondence of graviton excitation and mesonic operator were studied in [38, 40]. What we

are really interested in are those non-factorizable operators that can be interpreted as open

string excitations on the D-brane. This can be analyzed by using the Dirac-Born-Infeld

action of the D3-brane. In what follows we will focus on the dibaryon made of U fields,

which corresponds to the three-cycle D studied in subsection 3.2 which, for convenience, we

will parameterize with the coordinates (y, ψ, α). The analysis of the dibaryon made of V

field is similar. For our purpose we will use, as in eq. (2.35), the global coordinate system

for the AdS5 part of the metric and we will take the Y p,q part as written in eq. (2.12).

We are interested in the normal modes of oscillation of the wrapped D3-brane around the

solution corresponding to some fixed worldline in AdS5 and some fixed θ and φ on the

transverse S2. For such a configuration, the induced metric on the dibaryon is:

L−2ds2
ind = −dτ2 +

1

wv
dy2 +

v

9
dψ2 + w(dα + fdψ)2 , (3.70)

where the functions v(y), w(y) and f(y) have been defined in eq. (2.13) (in what follows

of this subsection we will take c = 1).

The fluctuations along the transverse S2 are the most interesting, since they change

the SU(2) quantum numbers and are most readily compared with the chiral primary states

in the field theory. Without lost of generality, we consider fluctuations around the north

pole of the S2, i.e. θ0 = 0. Instead of using coordinates θ and φ, it is convenient to go from

polar to Cartesian coordinates: ζ1 = θ sin φ and ζ2 = θ cos φ. As a further simplification
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we perform a shift in the coordinate ψ. The action for the D3-brane is:

S = −T3

∫

d4ξ
√

− det g + T3

∫

P [C(4)] . (3.71)

Let us expand the induced metric g around the static configuration as g = g(0) + δg, where

g(0) is the zeroth order contribution. The corresponding expansion for the action takes the

form:

S = S0 −
T3

2

∫

d4ξ
√

− det g(0) Tr[g−1
(0) δg] + T3

∫

P [C(4)] , (3.72)

where S0 = −T3

∫

d4ξ
√− det g(0). Note that the determinant of the induced metric at

zeroth order is a constant:
√

−det(g(0)) = 1
3L4. The five-form field strength is

F5 = (1 + ∗) 4
√

det(GY p,q)L4dθ ∧ dφ ∧ dy ∧ dψ ∧ dα . (3.73)

Moreover, using that
√

det(GY p,q) = 1−y
18 sin θ, we can choose the four-form Ramond-

Ramond field to be

C4 =
2

9
(1 − y)L4(cos θ − 1) dα ∧ dy ∧ dψ ∧ dφ , (3.74)

which is well defined around the north pole of S2. At quadratic order, the four form C4 is

C4 = −
√

−det g(0)
1 − y

3
εij ζi dζj ∧ dα ∧ dy ∧ dψ . (3.75)

The contribution from the Born-Infeld part of the effective action is:

Tr[g−1
(0) δg] = Gij gµν

(0) (∂µζi∂νζ
j) + 2gµν

(0) Gµi ∂νζi, (3.76)

where G is the metric of the background, i, j denote the components of G along the ζ1,2

directions and the indices µ, ν refer to the directions of the worldvolume of the cycle. The

non-vanishing components of G are:

Gij =
1 − y

6
L2δij , Gψi = −1

2

(

wf2 +
v

9

)

L2εij ζj, Gαi = −wf

2
L2εij ζj . (3.77)

Using these results one can verify that the effective Lagrangian is proportional to:

∑

i

L2 1 − y

6
gµν
(0)(∂µζi∂νζ

i) + 2gµν
(0) Gµi ∂νζi +

2(1 − y)

3
εij ζi ∂τ ζj . (3.78)

The equations of motion for the fluctuation are finally given by

L2

6
∂µ

(

(1 − y) gµν
(0) ∂νζ

i

)

+ 2∂ν(gµν
(0) Gµi) −

2(1 − y)

3
εij ∂τ ζj = 0 . (3.79)

Introducing ζ± = ζ1 ± iζ2, the equations of motion reduce to

(

∇2 − 1 − y

6
∂2

τ

)

ζ± ± i
2(1 − y)

3
∂τζ

± ± i∂ψζ± = 0 , (3.80)
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where ∇2 is the laplacian along the spatial directions of the cycle for the induced metric

g(0). The standard strategy to solve this equation is to use separation of variables as

ζ± = exp(−iωτ) exp

(

i
m

`
α

)

exp(inψ)Y k±
mn (y) . (3.81)

Plugging this ansatz into the equation of motion, we find

1

1 − y

d

dy

[

(1 − y)w(y)v(y)
d

dy
Y k±

mn (y)

]

(3.82)

=

[(

9f2(y)

v(y)
+

1

w(y)

)

m2

`2
− 18f(y)

v(y)

m

`
n +

9

v(y)
n2 − ω(ω ± 4) ± 6n

1 − y

]

Y k±
mn (y) .

The resulting equation has four regular singularities at y = y1, y2, y3 and ∞ and is known

as Heun’s equation (for clarity, in what follows we omit the indices in Y ) [41]:

d2

dy2
Y ± +

( 3
∑

i=1

1

y − yi

)

d

dy
Y ± + q(y)Y ± = 0, (3.83)

where, in our case

q(y) =
2

Q(y)

[

µ − y

4
ω(ω ± 4) − 1

2

3
∑

i=1

α2
iQ′(yi)

y − yi

]

,

µ =
3

32

(m

`
+ 2n

)(m

`
− 6n

)

+
1

4
ω(ω ± 4) ∓ 3n

2
, (3.84)

with Q(y) being the function defined in eq. (2.6). Now, given that the R-symmetry is dual

to the Reeb Killing vector of Y p,q, namely 2∂/∂ψ− 1
3 ∂/∂α, we can use the R-charge QR =

2n − m/3` instead of n as quantum number. The exponents at the regular singularities

y = yi are then given by

αi = ±1

2

(1 − yi)(m/` + 3QR yi)

Q′(yi)
. (3.85)

The exponents at y = ∞ are −ω
2 and ω

2 + 2 for Y +, while −ω
2 + 2 and ω

2 for Y −. We can

transform the singularity from {y1, y2, y3,∞} to {0, 1, b = y1−y3

y1−y2
,∞} by introducing a new

variable x, defined as:

x =
y − y1

y2 − y1
. (3.86)

It is also convenient to substitute

Y = x|α1|(1 − x)|α2|(b − x)|α3| h(x) , (3.87)

which transforms equation (3.83) into the standard form of the Heun’s equation

d2

dx2
h(x) +

(

C

x
+

D

x − 1
+

E

x − b

)

d

dx
h(x) +

ABx − k

x(x − 1)(x − b)
h(x) = 0. (3.88)
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Here the Heun’s parameters are given by

A = −ω

2
+

3
∑

i=1

|αi| , B =
ω + 4

2
+

3
∑

i=1

|αi| ,

C = 1 + 2|α1| , D = 1 + 2|α2| , E = 1 + 2|α3| , (3.89)

and

k = (|α1| + |α3|)(|α1| + |α3| + 1) − |α2|2

+b

[

(|α1| + |α2|)(|α1| + |α2| + 1) − |α3|2
]

− µ̃ ,

µ̃ = − 1

y1 − y2

(

µ − y1

4
ω(ω + 4)

)

=
p

q

[

1

6
(1 − y1)ω(ω + 4) − 3

16
QR

(

QR +
4m

3`

)

− 1

2

(

QR +
m

3`

)]

,

b =
1

2

(

1 +

√

4p2 − 3q2

q

)

. (3.90)

We only presented the equation for Y +; the corresponding equation for Y − can be obtained

by replacing ω with ω − 4 and changing the sign of the last term in (3.90).

Now let us discuss the solutions to this differential equation. For quantum number

QR = 2N (which implies m = 0), we find all αi equal to N/2. If we set ω = 3N , the

Heun’s parameters A and k both vanish. The corresponding solution h(x) is a constant

function. Similarly if ω = −3N − 4, then B and k vanish which also implies a constant

h(x). The complete solution of ζ± in these two cases is given by

ζ±1 = e±i(−3Nτ+Nψ)
3

∏

i=1

(y − yi)
N/2 ,

ζ±2 = e±i((3N+4)τ+Nψ)
3

∏

i=1

(y − yi)
N/2 . (3.91)

These constant solutions represent ground states with fixed quantum numbers and, since

they have the lowest possible dimension for a given R-charge, they should be identified

with the BPS operators. Indeed, in the solutions (3.91) the energy is quantized in units of

3L−1, and 3 is precisely the conformal dimension of O1. This provides a perfect matching

of AdS/CFT in this setting.

The situation for quantum numbers QR = N(p ± q ∓ 1/3`) and m = ±N is similar to

the case we have just discussed. The solutions for h(x) are constant with

ω =
Np

2

(

3 ± 2p −
√

4p2 − 3q2

q

)

, (3.92)

and

ω = −Np

2

(

3 ± 2p −
√

4p2 − 3q2

q

)

− 4. (3.93)
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We can see the conformal dimension satisfies ∆ = 3
2QR. So all these solutions are BPS

fluctuations which should correspond to the operators O2 and O3.

An interesting comment is in order at this point. Notice that the dibaryon excitations

should come out with the multiplicities associated to the SU(2) spin (see table 2) of the Oi

operators. However, in order to tackle this problem, we would need to consider at the same

time the fluctuation of the D3-brane probes and the zero-mode dynamics corresponding to

their collective motion along the sphere with coordinate θ and φ (see ref. [5] for a similar

discussion in the conifold case). This is an interesting problem that we leave open.

4. Supersymmetric D5-branes in AdS5 × Y p,q

In this section we will study the supersymmetric configurations of D5-branes in the AdS5×
Y p,q background. First of all, notice that in this case Γκ acts on the Killing spinors ε as:

Γκ ε =
i

6!
√−g

εµ1···µ6 γµ1···µ6
ε∗ , (4.1)

where we have used the relation (2.45) to translate eq. (2.46). The appearance of the

complex conjugation on the right-hand side of eq. (4.1) is crucial in what follows. Indeed,

the complex conjugation does not commute with the projections (2.32). Therefore, in order

to construct an additional compatible projection involving the ε → ε∗ operation we need

to include a product of gamma matrices which anticommutes with both Γ12 and Γ34. As

in the D3-brane case just analyzed, this compatibility requirement between the Γκ ε = ε

condition and (2.32) implies a set of differential equations whose solutions, if any, determine

the supersymmetric embeddings we are looking for.

We will carry out successfully this program only in the case of a D5-brane extended

along a two-dimensional submanifold of Y p,q. In analogy with what happens with the

conifold [4], one expects that these kinds of configurations represent a domain wall in

the gauge theory side such that, when one crosses one of these objects, the gauge groups

change and one passes from an N = 1 superconformal field theory to a cascading theory

with fractional branes. The supergravity dual of this cascading theory has been obtained in

ref. [21]. In the remainder of this section we will find the corresponding configurations of the

D5-brane probe. Moreover, in section 6 we will find, based on a different set of worldvolume

coordinates, another embedding of this type preserving the same supersymmetry as the one

found in the present section and we will analyze the effect of adding flux of the worldvolume

gauge fields. In section 6 we will also look at the possibility of having D5-branes wrapped

on a three-dimensional submanifold of Y p,q. These configurations are not supersymmetric,

although we have been able to find stable solutions of the equations of motion. The case

in which the D5-brane wraps the entire Y p,q corresponds to the baryon vertex. In this

configuration, studied also in section 6, the D5-brane captures the flux of the RR five-

form, which acts as a source for the electric worldvolume gauge field. We will conclude in

section 6 that this configuration cannot be supersymmetric, in analogy with what happens

in the conifold case [12].
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4.1 Domain wall solutions

We want to find a configuration in which the D5-brane probe wraps a two-dimensional

submanifold of Y p,q and is a codimension one object in AdS5. Accordingly, let us place

the probe at some constant value of one of the Minkowski coordinates (say x3) and let us

extend it along the radial direction. To describe such an embedding we choose the following

set of worldvolume coordinates for a D5-brane probe

ξµ = (t, x1, x2, r, θ, φ) , (4.2)

and we adopt the following ansatz:

y = y(θ, φ) , β = β(θ, φ) , (4.3)

with x3 and ψ constant. The induced Dirac matrices can be computed straightforwardly

from eq. (2.42) with the result:

γxµ =
r

L
Γxµ , µ = 0, 1, 2 ,

γr =
L

r
Γr ,

1

L
γθ = − 1√

6 H
yθ Γ1 −

H√
6

βθ Γ2 +

√
1 − cy√

6
Γ3 +

y

3
βθ Γ5 ,

1

L
γφ = − 1√

6 H
yφ Γ1 +

H√
6

(c cos θ − βφ) Γ2 +

√
1 − cy√

6
sin θ Γ4

+
1

3
[y βφ + (1 − cy) cos θ]Γ5 . (4.4)

From the general expression (4.1) one readily gets that the kappa symmetry matrix acts

on the spinor ε as:

Γκ ε =
i√−g

r2

L2
Γx0x1x2r γθφ ε∗ . (4.5)

By using the complex conjugate of the projections (2.32) one gets:

6

L2
γθφ ε∗ = [bI + b15 Γ15 + b35 Γ35 + b13 Γ13]ε

∗ , (4.6)

where the different coefficients are:

bI = −i
[

(1 − cy) sin θ + c cos θ yθ + yφβθ − yθβφ

]

,

b15 = −
√

2

3

1

H

[

(1 − cy) cos θ yθ + y (βφ yθ − βθ yφ)
]

− i

√

2

3
H cos θ βθ ,

b35 =

√

2

3

√

1 − cy
[

(1 − cy) cos θ + yβφ

]

+ i

√

2

3

√

1 − cy y sin θβθ ,

b13 =
√

1 − cy
[yφ

H
− Hβθ sin θ

]

+ i
√

1 − cy
[sin θ

H
yθ − H (c cos θ − βφ)

]

. (4.7)

As discussed above, in this case the action of Γκ involves the complex conjugation, which

does not commute with the projections (2.32). Actually, the only term on the right-hand
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side of (4.6) which is consistent with (2.32) is the one containing Γ13. Accordingly, we must

require:

bI = b15 = b35 = 0 . (4.8)

From the vanishing of the imaginary part of b15 we get:

βθ = 0 , (4.9)

while the vanishing of the real part of b15 leads to:

βφ = −1 − cy

y
cos θ . (4.10)

Notice that b35 is zero as a consequence of equations (4.9) and (4.10) which, in particular

imply that:

β = β(φ) . (4.11)

Moreover, by using eq. (4.9), the condition bI = 0 is equivalent to

(1 − cy) sin θ + (c cos θ − βφ)yθ = 0 , (4.12)

and plugging the value of βφ from (4.10), one arrives at:

yθ = −(1 − cy) y tan θ . (4.13)

In order to implement the kappa symmetry condition at all points of the worldvolume the

phase of b13 must be constant. This can be achieved by requiring that the real part of b13

vanishes, which for βθ = 0 is equivalent to the condition yφ = 0, i.e.:

y = y(θ) . (4.14)

The equation (4.13) for y(θ) is easily integrated, namely:

y

1 − cy
= k cos θ , (4.15)

where k is a constant. Moreover, by separating variables in eq. (4.10), one concludes that:

βφ = m , (4.16)

where m is a new constant. Plugging (4.15) into eq. (4.10) and using the result (4.16) one

concludes that the two constants m and k must be related as:

km = −1 , (4.17)

which, in particular implies that k and m cannot vanish. Thus, the embedding of the

D5-brane becomes

β = mφ + β0 ,

y = − cos θ

m − c cos θ
. (4.18)
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Notice that the solution (4.18) is symmetric under the change m → −m, θ → π − θ and

φ → 2π − φ. Thus, from now on we can assume that m ≥ 0.

It is now straightforward to verify that the BPS equation are equivalent to impose the

following condition on the spinor ε:

Γx0x1x2r13ε
∗ = σε , (4.19)

where σ is:

σ = sign
(cos θ

y

)

= −sign
(

m − c cos θ
)

. (4.20)

Obviously, the only valid solutions are those which correspond to having a constant sign

σ along the worldvolume. This always happens for m/c ≥ 1. In this case the minimal

(maximal) value of θ is θ = 0 (θ = π) if |m − c||y1| > 1 (|m − c||y2| > 1). Otherwise the

angle θ must be restricted to lie in the interval θ ∈ [θ1, θ2], where θ1 and θ2 are given by:

θi = arccos

[

myi

cyi − 1

]

, (i = 1, 2) . (4.21)

Notice that, similarly to what we obtained in the previous section, eq. (4.18) implies that

the configuration we arrived at does not in general correspond to a wrapped brane but to

a D5-brane that spans a two-dimensional submanifold with boundaries.

Let us now count the number of supersymmetries preserved by our configuration. In

order to do so we must convert eq. (4.19) into an algebraic condition on a constant spinor.

With this purpose in mind let us write the general form of ε as the sum of the two types

of spinors written in eq. (2.34), namely:

e
i
2
ψ ε = r−

1

2 η+ + r
1

2

(

x̄3

L2
Γrx3 η+ + η−

)

+
r

1

2

L2
xp Γrxp η+ , (4.22)

where x̄3 is the constant value of the coordinate x3 in the embedding and the index p runs

over the set {0, 1, 2}. By substituting eq. (4.22) on both sides of eq. (4.19), one can get the

conditions that η+ and η− must satisfy. Indeed, let us define the operator P as follows:

P ε ≡ iσeiψ0 Γrx3 Γ13 ε∗ . (4.23)

Then, one can check that eq. (4.19) is equivalent to:

P η+ = η+ ,

(1 + P) η− = −2x̄3

L2
Γrx3 η+ . (4.24)

As P2 = 1, we can classify the four spinors η− according to their P-eigenvalue as: P η
(±)
− =

±η
(±)
− . We can now solve the system (4.24) by taking η+ = 0 and η− equal to one of the

two spinors η
(−)
− of negative P-eigenvalue. Moreover, there are other two solutions which

correspond to taking a spinor η
(+)
− of positive P-eigenvalue and a spinor η+ related to the

former as:

η+ =
L2

x̄3
Γrx3 η

(+)
− . (4.25)
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Notice that, according to the first equation in (4.24), the spinor η+ must have positive

P-eigenvalue, in agreement with eq. (4.25). All together this configuration preserves four

supersymmetries, i.e. one half of the supersymmetries of the background, as expected for

a domain wall.

4.2 The calibrating condition

For any two-dimensional submanifold L of Y p,q one can construct its three-dimensional cone

L ⊂ CY p,q. The holomorphic (3, 0) form Ω of CY p,q can be naturally used to calibrate

such submanifolds. Indeed, L is called a special Lagrangian submanifold of CY p,q if the

pullback of Ω to L is, up to a constant phase, equal to the volume form of L, namely:

P [Ω]L = eiλ Vol (L) , (4.26)

where λ is constant on L. If the cone L is special Lagrangian, its base L is said to be

special Legendrian. It has been argued in ref. [42] that the supersymmetric configurations

of a D5-brane extended along a two-dimensional submanifold L of a Sasaki-Einstein space

are those for which L is special Lagrangian. Let us check that this is indeed the case for

the embeddings (4.18). First of all, we notice that the expression of Ω written in (2.26)

can be recast as:

Ω = eiψ r2 Ω4 ∧ [dr + i
r

L
e5] , (4.27)

where Ω4 is the two-form:

Ω4 =
1

L2
(e1 + ie2) ∧ (e3 − ie4) . (4.28)

In eqs. (4.27) and (4.28) e1, . . ., e5 are the vielbein one-forms of (2.28). Moreover, the

volume form of L can be written as:

Vol (L) = r2dr ∧ Vol (L) . (4.29)

For our embeddings (4.18) one can check that:

Vol (L) =
H

6

∣

∣

∣

cos θ

y

∣

∣

∣

√

1 − cy

[

1 + (1 − cy)
y2

H2
tan2 θ

]

dθ ∧ dφ . (4.30)

It is now straightforward to verify that our embeddings (4.18) satisfy (4.26) with eiλ =

−iσeiψ , where σ is the constant sign defined in (4.20) (recall that in our ansatz (4.3) the

angle ψ is constant). Thus, we conclude that L is special Legendrian, as claimed. Moreover,

one can check that:

P [J ]L = 0 . (4.31)

4.3 Energy bound

Let us consider a generic embedding y = y(θ), β = β(φ) and let us define the following

functions of θ and y

∆θ ≡ −y(1 − cy) tan θ , ∆φ ≡ −1 − cy

y
cos θ . (4.32)
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In terms of these functions the BPS equations (4.10) and (4.13) are simply yθ = ∆θ and

βφ = ∆φ. We have checked that any solution of this first-order equations also solves the

Euler-Lagrange equations derived from the Dirac-Born-Infeld lagrangian (3.58). Moreover,

the hamiltonian density H =
√−g satisfies a BPS bound as in (3.61), where Z is a total

derivative. To prove this statement, let us notice that H can be written as:

H =
r2

6

H√
1 − cy

∣

∣

∣

y

cos θ

∣

∣

∣

√

∆2
φ + (1 − cy)

cos2 θ

y2H2
y2

θ ×

×
√

(c cos θ − βφ)2 +
cos2 θ

H2y2(1 − cy)
∆2

θ +
2y2

3H2
(βφ − ∆φ)2 . (4.33)

Let us now rewrite H as H = |Z| + S, where

Z =
r2

6

H√
1 − cy

y

cos θ

[cos2 θ

y2H2
∆θ yθ − (c cos θ − βφ)∆φ

]

. (4.34)

One can check that |Z||BPS =
√−g|BPS. Moreover, for arbitrary functions y = y(θ) and

β = β(φ), one can verify that Z is a total derivative, namely:

Z =
∂

∂θ
Zθ +

∂

∂φ
Zφ . (4.35)

In order to write the explicit expressions of Zθ and Zφ, let us define the function g(y) as

follows:

g(y) ≡ −
∫

√
1 − cy

H(y)
dy . (4.36)

Then one can verify that eq. (4.35) is satisfied for Zθ and Zφ given by:

Zθ =
r2

6
sin θ g(y) ,

Zφ =
r2

6

[

− cos θ g(y)φ + H(y)
√

1 − cy (cφ cos θ − β)
]

. (4.37)

One can prove that H ≥ |Z| is equivalent to:

cos2 θ

y2(1 − cy)

[

∆φ ∆θ + (1 − cy) (c cos θ − βφ) yθ

]2
+

2y2

3

[

∆2
φ +

(1 − cy) cos2 θ

y2H2
y2

θ

]

[βφ − ∆φ ]2 ≥ 0 , (4.38)

which is always satisfied. Moreover, by using that (c cos θ − βφ)|BPS = cos θ/y, one can

prove that this inequality is saturated precisely when the BPS differential equations are

satisfied.

5. Supersymmetric D7-branes in AdS5 × Y p,q

For a D7-brane the kappa symmetry matrix (2.46) takes the form:

Γk = − i

8!
√−g

εµ1...µ8γµ1...µ8
, (5.1)
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where, again, we have used the rules of eq. (2.45) to write the expression of Γk acting

on complex spinors. The D7-branes which fill the four Minkowski spacetime directions

and extend along some holographic non-compact direction can be potentially used as fla-

vor branes, i.e. as branes whose fluctuations can be identified with the dynamical mesons

of the gauge theory. In this section we will find a family of these configurations which

preserve four supersymmetries. In section 6 we will determine another family of super-

symmetric spacetime filling configurations of D7-branes and we will also demonstrate that

there are embeddings in which the D7-brane wraps the entire Y p,q space and preserve two

supersymmetries.

5.1 Spacetime filling D7-brane

Let us choose a system of worldvolume coordinates motivated by the spacetime filling

character of the configuration that we are trying to find, namely:

ξ = (t, x1, x2, x3, y, β, θ, φ). (5.2)

The ansatz we will adopt for the embedding is:

ψ = ψ(β, φ), r = r(y, θ). (5.3)

In this case the general expression of Γκ (eq. (5.1)) reduces to:

Γκ = −i
r4

L4
√−g

Γx0···x3 γyβθφ . (5.4)

In order to implement the Γκ ε = ε condition we require that the spinor ε is an eigenvector

of the matrix Γ∗ defined in eq. (2.29). Then, according to eq. (2.34), Γ∗ε = −ε, i.e. ε is of

the form ε− and, therefore, it satisfies:

Γx0···x3 ε− = iε− . (5.5)

Moreover, as ε− has fixed ten-dimensional chirality, the condition (5.5) implies:

Γr5ε− = −iε− . (5.6)

By using the projection (5.5), one immediately arrives at:

Γκ ε− =
r4

L4
√−g

γyβθφ ε− . (5.7)

The induced gamma matrices appearing on the right-hand side of eq. (5.7) are:

1

L
γy = − 1√

6H
Γ1 +

1

r
ryΓr,

1

L
γθ =

√
1 − c y√

6
Γ3 +

1

r
rθΓr,

1

L
γβ = − H√

6
Γ2 +

1

3
(ψβ + y) Γ5,

1

L
γφ =

cH cos θ√
6

Γ2 +

√
1 − c y√

6
sin θΓ4 +

1

3
(ψφ + (1 − c y) cos θ) Γ5 . (5.8)

– 35 –



J
H
E
P
0
3
(
2
0
0
6
)
1
0
1

After using eqs. (2.32) and (5.6), the action of γyβθφ on ε can be written as:

1

L4
γyβθφ ε− = [dI + d15 Γ15 + d35 Γ35 + d13Γ13]ε− , (5.9)

where the different coefficients are given by:

dI =
1 − cy

36
sin θ +

1 − cy

18
sin θ (y + ψβ)

ry

r
− 1

18
[(1 + cψβ) cos θ + ψφ]

rθ

r
,

d15 = i
1 − cy

6
√

6
H sin θ

[ry

r
− y + ψβ

3H2

]

,

d35 = −i

√
1 − cy

6
√

6

[

sin θ
rθ

r
+

1

3
((1 + cψβ) cos θ + ψφ)

]

,

d13 =

√
1 − cy

18
H

[

sin θ
y + ψβ

H2

rθ

r
+ ((1 + cψβ) cos θ + ψφ)

ry

r

]

. (5.10)

As the terms containing the matrices Γ15, Γ35 and Γ13 give rise to projections which are

not compatible with those in eq. (2.32), we have to impose that:

d15 = d35 = d13 = 0 . (5.11)

From the vanishing of d15 and d35 we obtain the following first-order differential equations

ry = Λy , rθ = Λθ , (5.12)

where we have defined Λy and Λθ as:

Λy =
r

3H2
(y + ψβ) ,

Λθ = − r

3 sin θ
[(1 + cψβ) cos θ + ψφ] . (5.13)

Notice that the equations (5.12) imply that d13 = 0. One can also check that r4 dI =
√−g

if the first-order equations (5.12) hold and, therefore, one has indeed that Γκε− = ε−. Thus,

any Killing spinor of the type ε = ε−, with ε− as in eq. (2.34), satisfies the kappa symmetry

condition if the BPS equations (5.12) hold. Therefore, these configurations preserve the

four ordinary supersymmetries of the background and, as a consequence, they are 1/8

supersymmetric.

5.2 Integration of the first-order equations

Let us now obtain the general solution of the system (5.12). Our first observation is that,

according to (5.3), the only dependence on the coordinates β and φ appearing in eqs. (5.12)

and (5.13) comes from the derivatives of ψ. Therefore, for consistency with the assumed

dependence of the functions of the ansatz (5.3), ψφ and ψβ must be constants. Thus, let

us write:

ψφ = n1 , ψβ = n2 , (5.14)

which can be trivially integrated, namely:

ψ = n1 φ + n2 β + constant . (5.15)
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It is now easy to obtain the function r(θ, y). The equations to integrate are:

ry =
r

3H2
(y + n2) , rθ = − r

3 sin θ

[

(1 + cn2) cos θ + n1

]

. (5.16)

Let us first integrate the equation for rθ in (5.16). We get:

r(y, θ) =
A(y)

[

sin θ
2

]

1+n1+cn2
3

[

cos θ
2

]

1−n1+cn2
3

, (5.17)

with A(y) a function of y to be determined. Plugging this result in the equation for ry

in (5.16), we get the following equation for A:

1

A

dA

dy
=

1

3

y + n2

H2
, (5.18)

which can be integrated immediately, namely:

A3(y) = C
[

f1(y)
]n2

f2(y) , (5.19)

with C a constant and f1(y) and f2(y) being the functions defined in (2.24). Then, we can

write r(y, θ) as:

r3(y, θ) = C

[

f1(y)
]n2

f2(y)
[

sin θ
2

]1+n1+cn2
[

cos θ
2

]1−n1+cn2
. (5.20)

Several comments concerning the solution displayed in eqs. (5.15) and (5.20) are in order.

First of all, after a suitable change of variable it is easy to verify that for c = 0 one

recovers from (5.15) and (5.20) the family of D7-brane embeddings in AdS5 × T 1,1 found

in ref. [12]. Secondly, the function r(y, θ) in (5.20) always diverges for some particular

values of θ and y, which means that the probe always extends infinitely in the holographic

direction. Moreover, for some particular values of n1 and n2 there is a minimal value of the

coordinate r, which depends on the integration constant C. This fact is important when

one tries to use these D7-brane configurations as flavor branes, since this minimal value

of r provides us with an energy scale, which is naturally identified with the mass of the

dynamical quarks added to the gauge theory. It is also interesting to obtain the form of

the solution written in eqs. (5.15) and (5.20) in terms of the complex variables zi defined

in (2.23). After a simple calculation one can verify that this solution can be written as a

polynomial equation of the form:

zm1

1 zm2

2 zm3

3 = constant , (5.21)

where the mi’s are constants and m3 6= 0.5 The relation between the mi’s of (5.21) and

the ni’s of eqs. (5.15) and (5.20) is:

n1 =
m1

m3
, n2 =

m2

m3
. (5.22)

5It is natural to expect a condition of the form f(z1, z2, z3) = 0, where f is a general holomorphic

function of its arguments. However, in order to be able to solve the problem analytically we started from

a restrictive ansatz (5.3) that, not surprisingly, leads to a particular case of the expected answer.
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Notice that when n2 = m2 = 0 the dependence on β disappears and the configuration

is reminiscent of its analog in the conifold case [12]. When n2 6= 0 the D7-brane winds

infinitely the ψ-circle.

5.3 Energy bound

As it happened in the case of D3- and D5-branes, one can verify that any solution of the

first-order equations (5.12) also solves the equations of motion. We are now going to check

that there exists a bound for the energy which is saturated by the solutions of the first-order

equations (5.12). Indeed, let r(y, θ) and ψ(β, φ) be arbitrary functions. The hamiltonian

density H =
√−g in this case can be written as:

H =
r2

6
sin θ

√

√

√

√

(

r2
θ + (1 − cy)

[

H2 r2
y +

r2

6

]

) (

Λ2
θ + (1 − cy)

[

H2 Λ2
y +

r2

6

]

)

, (5.23)

where Λy and Λθ are the functions displayed in eq. (5.13). Let us rewrite this function H
as Z + S, where Z is given by:

Z =
r2

6
sin θ

[

rθΛθ + (1 − cy)
(

H2 ry Λy +
r2

6

)

]

. (5.24)

One can prove that Z is a total derivative:

Z = ∂θ Zθ + ∂y Zy , (5.25)

where Zθ and Zy are:

Zθ = − r4

72

[

ψφ + (1 + cψβ) cos θ
]

,

Zy =
r4

72
(1 − cy) (y + ψβ) sin θ . (5.26)

Moreover, when Z is given by (5.24), one can demonstrate the bound (3.61). Actually, one

can show that the condition H ≥ |Z| is equivalent to the inequality:

(rθ − Λθ)
2 + H2 (1 − cy) (ry − Λy)

2 +
H2

r2
(rθ Λy − ry Λθ)

2 ≥ 0 , (5.27)

which is always satisfied and is saturated precisely when the BPS equations (5.12) are

satisfied. Notice also that Z|BPS is positive.

6. Other interesting possibilities

Let us now look at some other configurations of different branes and cycles not considered

so far. We first consider D3-branes extended along one of the Minkowski coordinates

and along a two-dimensional submanifold of Y p,q. These configurations represent “fat”

strings from the point of view of the gauge theory. We verify in subsection 6.1 that

an embedding of this type breaks completely the supersymmetry, although there exist
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stable non-supersymmetric fat strings. In subsection 6.2 we find a new configuration of

a D5-brane wrapping a two-dimensional submanifold, whereas in subsection 6.3 we add

worldvolume flux to the domain wall solutions of section 4. In subsection 6.4 we consider

the possibility of having D5-branes wrapping a three-cycle. We show that such embeddings

cannot be supersymmetric, even though stable solutions of the equations of motion with

these characteristics do exist. In subsection 6.5 we analyze the baryon vertex configuration

(a D5-brane wrapping the entire Y p,q space) and we verify that such embedding breaks

supersymmetry completely. In subsection 6.6 we explore the existence of spacetime filling

supersymmetric configurations of D7-branes by using a set of worldvolume coordinates

different from those used in section 5. Finally, in subsection 6.7 we show that a D7-brane

can wrap the whole Y p,q space and preserve some fraction of supersymmetry.

6.1 D3-branes on a two-submanifold

Let us take a D3-brane which is extended along one of the spatial directions of the world-

volume of the D3-branes of the background (say x1) and wraps a two-dimensional cycle.

The worldvolume coordinates we will take are

ξµ = (x0, x1, θ, φ) , (6.1)

and we will look for embeddings with x2, x3, r and ψ constant and with

y = y(θ, φ) , β = β(θ, φ) . (6.2)

In this case the kappa symmetry matrix acts on ε as:

Γκ ε = − i√−g

r2

L2
Γx0x1 γθφ ε . (6.3)

The expressions of γθ and γφ are just those given in eq. (4.4). Moreover, γθφ ε can be

obtained by taking the complex conjugate of eq. (4.6):

6

L2
γθφ ε = [b∗I + b∗15 Γ15 + b∗35 Γ35 + b∗13 Γ13]ε , (6.4)

where the b’s are given in eq. (4.7). Since now the complex conjugation does not act on

the spinor ε, the only possible projection compatible with those of the background is the

one originated from the term with the unit matrix in the previous expression. Then, we

must require:

b15 = b35 = b13 = 0 . (6.5)

The conditions b15 = 0 and b35 = 0 are equivalent and give rise to eqs. (4.9) and (4.10),

which can be integrated as in eq. (4.18). Moreover, the condition b13 = 0 leads to the

equation:
y

H2
yθ = cot θ . (6.6)

The integration of this equation can be straightforwardly performed in terms of the function

f2(y) defined in eq. (2.24) and can be written as:

1
√

a − 3y2 + 2cy3
= k sin θ , (6.7)
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with k being a constant of integration, which should be related to the constant m in

eq. (4.18). However, the dependence of y on θ written in the last equation does not seem

to be compatible with the one of eq. (4.18) (even for c = 0). Thus, we conclude that there

is no solution for the kappa symmetry condition in this case.

If we forget about the requirement of supersymmetry it is not difficult to find solutions

of the Euler-Lagrange equations of motion of the D3-brane probe. Indeed, up to irrelevant

global factors, the lagrangian for the D3-brane considered here is the same as the one

corresponding to a D5-brane extended along a two-dimensional submanifold of Y p,q. Thus,

the embeddings written in eq. (4.18) are stable solutions of the equations of motion of the

D3-brane which represent a “fat string” from the gauge theory point of view.

6.2 More D5-branes wrapped on a two-cycle

Let us consider a D5-brane wrapped on a two-cycle and let us choose the following set of

worldvolume coordinates: ξµ = (x0, x1, x2, r, θ, y). The embeddings we shall consider have

x3 and ψ constant and φ = φ(θ, y), β = β(θ, y). For this case, one has:

Γκ ε =
i√−g

r2

L2
Γx0x1x2r γθy ε∗ . (6.8)

The induced gamma matrices are:

1

L
γθ =

H√
6

(

− βθ + c cos θφθ

)

Γ2 +

√

1 − cy

6

(

Γ3 + sin θφθΓ4

)

+

+
1

3

(

yβθ + (1 − cy) cos θ φθ

)

Γ5 ,

1

L
γy = − 1√

6H
Γ1 +

H√
6

(

− βy + c cos θφy

)

Γ2 +

√

1 − cy

6
sin θφy Γ4 +

+
1

3

(

yβy + (1 − cy) cos θφy

)

Γ5 . (6.9)

Then, one has

6

L2
γθy ε∗ =

(

fI + f15Γ15 + f35Γ35 + f13Γ13

)

ε∗ , (6.10)

where the different coefficients are given by:

fI = −i
(

(1 − cy) sin θ φy − c cos θφθ + βθ

)

,

f15 =

√

2

3

1

H

(

yβθ + (1 − cy) cos θφθ

)

+ i

√

2

3
H cos θ

(

βy φθ − βθ φy

)

, (6.11)

f35 =

√

2

3

√

1 − cy
[(

yβy + (1 − cy) cos θφy

)

− i y sin θ
(

βy φθ − βθ φy

)]

,

f13 =
√

1 − cy
[( 1

H
+ H sin θ (βy φθ − βθ φy)

)

− i
(sin θ

H
φθ − H(βy − c cos θφy)

)]

.

The BPS conditions in this case are the following:

fI = f15 = f35 = 0 . (6.12)
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From the vanishing of fI we get the equation:

βθ + (1 − cy) sin θ φy − c cos θφθ = 0 . (6.13)

Moreover, the vanishing of f15 and f35 is equivalent to the equations:

yβθ + (1 − cy) cos θφθ = 0 ,

yβy + (1 − cy) cos θ φy = 0 ,

βy φθ − βθ φy = 0 . (6.14)

Notice that this system of equations is redundant, i.e. the first two equations are equivalent

if one uses the last one. Substituting the value of βθ as given by the first equation in (6.14)

into (6.13), one can get a partial differential equation which only involves derivatives of φ,

namely:

cot θ φθ − y(1 − cy)φy = 0 . (6.15)

By using in (6.15) the last equation in (6.14), one gets:

cot θ βθ − y(1 − cy)βy = 0 . (6.16)

Eqs. (6.15) and (6.16) can be easily integrated by the method of separation of variables.

One gets

φ = A

[

y

(1 − cy) cos θ

]α

+ φ0 ,

β =
α

1 − α
A

[

y

(1 − cy) cos θ

]α−1

+ β0 , (6.17)

where A, α, φ0 and β0 are constants of integration and we have used eq. (6.14) to relate the

integration constants of φ and β. However, in order to implement the condition Γκ ε = ε,

one must require the vanishing of the imaginary part of f13. This only happens if φ and β

are constant, i.e. when A = 0 in the above solution. One can check that this configuration

satisfies the equation of motion.

6.3 D5-branes on a two-submanifold with flux

We now analyze the effect of adding flux of the worldvolume gauge field F to the configura-

tions of section 4 6. Notice that we now have a non-zero contribution from the Wess-Zumino

term of the action, which is of the form:

LWZ = P [C(4) ] ∧ F . (6.18)

Let us suppose that we switch on a worldvolume gauge field along the angular directions

(θ, φ). We will adopt the ansatz:

Fθφ = q K(θ, φ) , (6.19)

6A nice discussion of supersymmetric configurations with nonzero gauge field strengths by means of

kappa symmetry can be found in ref. [43].
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where q is a constant and K(θ, φ) a function to be determined. The relevant components

of P [C(4) ] are

P [C(4) ]x0x1x2r = h−1 ∂x3

∂r
, (6.20)

where h = L4/r4. It is clear from the above expression of LWZ that a nonvanishing value

of q induces a dependence of x3 on r. In what follows we will assume that x3 = x3(r), i.e.

that x3 only depends on r. Let us assume that the angular embedding satisfies the same

equations as in the case of zero flux. The Lagrangian density in this case is given by:

L = −h− 1

2

√

1 + h−1 (x′)2
√

gθθgφφ + q2 K2 + q h−1x′K , (6.21)

where gθθ and gφφ are elements of the induced metric, we have denoted x3 simply by x and

the prime denotes derivative with respect to r. The equation of motion of x is:

−
√

gθθgφφ + q2 K2

√

1 + h−1 (x′)2
h− 3

2 x′ + q h−1 K = constant . (6.22)

Taking the constant on the right-hand side of the above equation equal to zero, we get the

following solution for x′:

x′(r) = q h
1

2
K(θ, φ)
√

gθθgφφ
. (6.23)

Notice that the left-hand side of the above equation depends only on r, whereas the right-

hand side can depend on the angles (θ, φ). For consistency the dependence of K(θ, φ) and
√

gθθgφφ on (θ, φ) must be the same. Without lost of generality let us take K(θ, φ) to be:

L2 K(θ, φ) =
√

gθθgφφ , (6.24)

where the factor L2 has been introduced for convenience. Using this form of K, the

differential equation which determines the dependence of x3 on r becomes:

x′(r) =
q

r2
, (6.25)

which can be immediately integrated, namely:

x(r) = x̄3 − q

r
. (6.26)

Moreover, the expression of K can be obtained by computing the induced metric along the

angular directions. It takes the form:

K(θ) = σ

√
1 − cy

6H(y)

[

H2(y) + (1 − cy)y2 tan2 θ
]cos θ

y
, (6.27)

where y = y(θ) is the function obtained in section 4 and σ = sign
(

cos θ/y
)

. Actually,

notice that K only depends on the angle θ and it is independent of φ.
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We are now going to verify that the configuration just found is supersymmetric. The

expression of Γκ in this case has an additional term due to the worldvolume gauge field.

Actually, it is straightforward to check that in the present case

Γκ ε =
i

√

− det(g + F )

r3

L3
Γx0x1x2

[

γr γθφ ε∗ − γr Fθφ ε

]

. (6.28)

Notice that γr is given by:

γr =
L

r
(Γr +

r2

L2
x′ Γx3) . (6.29)

For the angular embeddings we are considering it is easy to prove from the results of

section 4 that:

γθφ ε∗ = −iσL2K(θ) Γ13 ε∗ . (6.30)

By using this result and the value of Fθφ (eq. (6.19)), one easily verifies that:

Γκ ε = − i

1 + q2

L4

Γx0x1x2r

[

iσΓ13 ε∗ +
q

L2
iσ Γrx3 Γ13 ε∗ +

q

L2
ε +

q2

L4
Γrx3 ε

]

. (6.31)

By using the explicit dependence of x on r (eq. (6.26)), one can write the Killing spinor ε

evaluated on the worldvolume as:

e
i
2
ψ ε = r−

1

2

(

1 − q

L2
Γrx3

)

η+ + r
1

2

( x̄3

L2
Γrx3 η+ + η−

)

+
r

1

2

L2
xp Γrxp η+ , (6.32)

where the constant spinors η± are the ones defined in eq. (2.33). Remarkably, one finds

that the condition Γκε = ε is verified if η+ and η− satisfy the same system (4.24) as is the

case of zero flux.

6.4 D5-branes wrapped on a three-cycle

We will now try to find supersymmetric configurations of D5-branes wrapping a three

cycle of the Y p,q space. Let us choose the following set of worldvolume coordinates ξµ =

(x0, x1, x2, y, β, ψ) and consider an embedding with x3 and r constant, θ = θ(y, β) and

φ = φ(y, β). In this case:

Γκ ε =
i√−g

r3

L3
Γx0x1x2 γyβψ ε∗ . (6.33)

The value of γyβψ ε∗ can be obtained by taking the complex conjugate of eq. (3.29). As

c1 = c3 = 0 when θψ = φψ = 0, we can write:

i

L3
γyβψ ε∗ = [c∗5 Γ5 + c∗135 Γ135]ε

∗ . (6.34)

The only possible BPS condition compatible with the projections satisfied by ε is c5 = 0,

which leads to a projection of the type

Γx0x1x2Γ135 ε∗ = λε , (6.35)
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where λ is a phase. Notice that, however, as the spinor ε contains a factor e−
i
2
ψ, the

two sides of the above equation depend differently on ψ due to the complex conjugation

appearing on the left-hand side (λ does not depend on ψ). Thus, these configurations

cannot be supersymmetric. We could try to use another set of worldvolume coordinates, in

particular one which does not include ψ. After some calculation one can check that there

is no consistent solution.

For the ansatz considered above the lagrangian density of the D5-brane is, up to ir-

relevant factors, the same as the one obtained in subsection 3.2 for a D3-brane wrapping

a three-dimensional submanifold of Y p,q. Therefore any solution of the first-order equa-

tions (3.34) gives rise to an embedding of a D5-brane which solves the equations of motion

and saturates an energy bound. This last fact implies that the D5-brane configuration is

stable, in spite of the fact that it is not supersymmetric.

6.5 The baryon vertex

If a D5-brane wraps the whole Y p,q space, the flux of the Ramond-Ramond five form F (5)

that it captures acts as a source for the electric worldvolume gauge field which, in turn,

gives rise to a bundle of fundamental strings emanating from the D5-brane. This is the

basic argument of Witten’s construction of the baryon vertex [3], which we will explore in

detail now. In this case the probe action must include the worldvolume gauge field F in

both the Born-Infeld and Wess-Zumino terms. It takes the form:

S = −T5

∫

d6ξ
√

− det(g + F ) + T5

∫

d6ξ A ∧ F (5) , (6.36)

where T5 is the tension of the D5-brane and A is the one-form potential for F ( F = dA).

In order to analyze the contribution of the Wess-Zumino term in (6.36) let us rewrite the

expression (2.15) of F (5) as:

F (5) =
L4

27
(1 − cy) sin θ dy ∧ dβ ∧ dθ ∧ dφ ∧ dψ + Hodge dual , (6.37)

where, for simplicity we are taking the string coupling constant gs equal to one. Let us

also choose the following set of worldvolume coordinates:

ξµ = (x0, y, β, θ, φ, ψ) . (6.38)

It is clear from the expressions of F (5) in (6.37) and of the Wess-Zumino term in (6.36)

that, for consistency, we must turn on the time component of the field A. Actually, we will

adopt the following ansatz:

r = r(y) , A0 = A0(y) . (6.39)

The action (6.36) for such a configuration can be written as:

S =
T5L

4

108
V4

∫

dx0dy Leff , (6.40)
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where the volume V4 is:

V4 = 6

∫

dα dψ dφdθ sin θ = 96π3 ` , (6.41)

and the effective lagrangian density Leff is given by:

Leff = (1 − cy)

[

− H

√

r2

H2
+ 6 (r′)2 − 6 (Fx0y)

2 + 4A0

]

. (6.42)

Notice that, for our ansatz (6.39), the electric field is Fx0y = −∂yA0. Let us now introduce

the displacement field, defined as:

D(y) ≡ ∂Leff

∂Fx0y
=

6(1 − cy)HFx0y
√

r2

H2 + 6 (r′)2 − 6 (Fx0y)
2

. (6.43)

From the equations of motion of the system it is straightforward to determine D(y). Indeed,

the variation of S with respect to A0 gives rise to the Gauss’ law:

dD(y)

dy
= −4(1 − cy) , (6.44)

which can be immediately integrated, namely:

D(y) = −4

(

y − cy2

2

)

+ constant . (6.45)

By performing a Legendre transform in (6.40) we can obtain the energy of the configuration:

E =
T5L

4

108
V4

∫

dy H , (6.46)

where H is given by:

H = (1 − cy)H

√

r2

H2
+ 6 (r′)2 − 6 (Fx0y)

2 + D(y)Fx0y . (6.47)

Moreover, the relation (6.43) between D(y) and Fx0y can be inverted, with the result:

Fx0y =
1

6

√

r2

H2 + 6 (r′)2
√

D2

6 + (1 − cy)2 H2
D . (6.48)

Using the relation (6.48) we can rewrite H as:

H =

√

D2

6
+ (1 − cy)2 H2

√

r2

H2
+ 6 (r′)2 , (6.49)

where D(y) is the function of the y coordinate displayed in (6.45). The Euler-Lagrange

equation derived from H is a second-order differential equation for the function r(y). This

equation is rather involved and we will not attempt to solve it here. In a supersymmetric
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configuration one expects that there exists a first-order differential equation for r(y) whose

solution also solves the equations of motion. This first-order equation has been found in

ref. [44] for the AdS5 × S5 background. We have not been able to find such first-order

equation in this AdS5 × Y p,q case. A similar negative result was obtained in [12] for the

AdS5 ×T 1,1 background. This result is an indication that this baryon vertex configuration

is not supersymmetric. Let us check explicitly this fact by analyzing the kappa symmetry

condition. The expression of Γκ when the worldvolume gauge field is non-zero can be found

in ref. [18]. In our case Γκ ε reduces to:

Γκ ε = − i
√

− det(g + F )

[

r

L
Γx0 γyβθφψ ε∗ − Fx0y γβθφψ ε

]

. (6.50)

The two terms on the right-hand side of (6.50) containing the antisymmetrized products

of gamma matrices can be written as:

γyβθφψ ε∗ =
L5

108
(1 − cy) sin θ

(

Γ5 −
√

6 H
r′

r
Γr15

)

ε∗ ,

γβθφψ ε = − L4

18
√

6
(1 − cy)H sin θ Γ15 ε . (6.51)

By using this result, we can write Γκ ε as:

Γκ ε = − i L4 (1 − cy)
√

− det(g + F )
sin θ

[

r

108
Γx0Γ5 ε∗ +

H

18
√

6

(

Fx0y Γ15 ε − r′ Γx0r15 ε∗
)

]

. (6.52)

In order to solve the Γκ ε = ε equation we shall impose, as in ref. [45], an extra projection

such that the contributions of the worldvolume gauge field Fx0y and of r′ in (6.52) cancel

each other. This can be achieved by imposing that Γx0r ε∗ = ε and that Fx0y = r′. Notice

that the condition Γx0r ε∗ = ε corresponds to having fundamental strings in the radial

direction, as expected for a baryon vertex configuration. Moreover, as the spinor ε has

fixed ten-dimensional chirality, this extra projection implies that iΓx0Γ5 ε∗ = −ε which,

in turn, is needed to satisfy the Γκ ε = ε equation. However, the condition Γx0r ε∗ = ε

is incompatible with the conditions (2.32) and, then, it cannot be imposed on the Killing

spinors. Thus, as in the analysis of [12], we conclude from this incompatibility argument

(which is more general than the particular ansatz we are adopting here) that the baryon

vertex configuration breaks completely the supersymmetry of the AdS5×Y p,q background.

6.6 More spacetime filling D7-branes

Let us adopt ξµ = (x0, x1, x2, x3, y, β, ψ, r) as our set of worldvolume coordinates for a

D7-brane probe and let us consider a configuration with θ = θ(y, β) and φ = φ(y, β). In

this case:

Γκ = − i√−g

r4

L4
Γx0x1x2x3 γyβψr . (6.53)

Let us take ε = ε−, where Γ∗ε− = −ε−(see eq. (2.34)). As γr = L
r Γr, we can write:

r

L4
γyβψr ε− = −[c5 + c135 Γ13]ε− , (6.54)
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where the coefficients c5 and c135 are exactly those written in eq. (3.30) for the D (doublet)

three-cycles. The BPS condition is just c135 = 0, which leads to the system of differential

equations (3.34). Thus, in this case the D7-brane extends infinitely in the radial direc-

tion and wraps a three-dimensional submanifold of the Y p,q space of the type studied in

subsection 3.2. These embeddings preserve four supersymmetries.

6.7 D7-branes wrapped on Y p,q

Let us take a D7-brane which wraps the entire Y p,q space and is extended along two

Minkowski directions. The set of worldvolume coordinates we will use in this case are

ξµ = (x0, x1, r, θ, φ, y, β, ψ) and we will assume that x2 and x3 are constant. The matrix

Γκ in this case is:

Γκ = − i√−g
γx0x1rθφyβψ . (6.55)

Acting on a spinor ε of the background one can prove that

Γκ ε = iΓx0x1r5 ε , (6.56)

which can be solved by a spinor ε− = r
1

2 e−
i
2
ψ η−, with η− satisfying the additional pro-

jection Γx0x1r5 η− = −iη−. Thus this configuration preserves two supersymmetries.

7. Summary and conclusions

Let us briefly summarize the results of our investigation. Using kappa symmetry as the

central tool, we have systematically studied supersymmetric embeddings of branes in the

AdS5 × Y p,q geometry. Our study focused on three kinds of branes D3, D5 and D7.

D3-branes: this is the case that we studied most exhaustively. For D3-branes wrapping

three-cycles in Y p,q we first reproduced all the results present in the literature. In partic-

ular, using kappa symmetry, we obtained two kinds of supersymmetric cycles: localized at

y1 and y2 [15] and localized in the round S2 [16, 21]. For these branes we found perfect

agreement with the field theory results. Moreover, we also found a new class of supersym-

metric embeddings of D3-branes in this background. They do not correspond to dibaryonic

operators since the D3-brane does not wrap a three-cycle. The field theory interpretation

of these new embeddings is not completely clear to us due to various issues with global

properties. We believe that they might be a good starting point to find candidates for

representatives of the integer part of the third homology group of Y p,q, just like the anal-

ogous family of cycles found in [5, 12] were representative of the integer part H3(T
1,1, Z).

It would be important to understand these wrapped D3-branes in terms of algebraic ge-

ometry as well as in terms of operators in the field theory dual, following the framework

of ref. [11] which, in the case of the conifold, emphasizes the use of global homogeneous

coordinates. It is worth stressing that such global homogeneous coordinates exist in any

toric variety [46] but the relation to the field theory operators is less clear in CY p,q. We

analyzed the spectrum of excitations of a wrapped D3-brane describing an SU(2)-charged

dibaryon and found perfect agreement with the field theory expectations. We considered
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other embeddings and found that a D3-brane wrapping a two-cycle in Y p,q is not a su-

persymmetric state but, nevertheless, it is stable. In the field theory this configuration

describes a fat string.

D5-branes: the embedding that we paid the most attention to is a D5-brane extended

along a two-dimensional submanifold in Y p,q and having codimension one in AdS5. In the

field theory this is the kind of brane that represents a domain wall across which the rank

of the gauge groups jumps. Alternatively, when we allow the D5-brane to extend infinitely

in the holographic direction, we get a configuration dual to a defect conformal field theory

of the type analyzed in ref. [47] for the AdS5 × S5 background. We showed explicitly

that such configuration preserves four supersymmetries and saturates the expected energy

bound. For this configuration we also considered turning on a worldvolume flux and found

that it can be done in a supersymmetric way. The flux in the worldvolume of the brane

provides a bending of the profile of the wall, analogously to what happens in AdS5×S5 [48]

and AdS5 × T 1,1 [12]. We showed the consistency of similar embeddings in which the

D5-brane wraps a different two-dimensional submanifold in Y p,q. We also considered D5-

branes wrapping three-cycles. This configuration also looks like a domain wall in the field

theory dual but it does not have codimension one in AdS5 and, although it cannot be

supersymmetric, it is stable. Finally, we considered a D5-brane wrapping the whole Y p,q,

which corresponds to the baryon vertex. We verified that, as in the case of T 1,1, it is not

a supersymmetric configuration.

D7-branes: with the aim of introducing mesons in the corresponding field theory, we

considered spacetime filling D7-branes. We explicitly showed that such configurations

preserve four supersymmetries and found the precise embedding in terms of the radial

coordinate. We found an interpretation of the embedding equation in terms of complex

coordinates. We also analyzed other spacetime filling D7-brane embeddings. Finally, we

considered a D7-brane that wraps Y p,q and is codimension two in AdS5. This configuration

looks, from the field theory point of view, as a string and preserves two supersymmetries.

We would like to comment on various approximations made in the paper and point out

some interesting open problems. We believe that our analysis, though carried out in the

case of Y p,q manifolds, is readily adaptable to other Sasaki-Einstein spaces. In particular,

the form of the spinor for La,b,c is essentially the same as in our case, namely ε−iψ/2η, where

ψ is the coordinate on the U(1) fiber in the canonical presentation of Sasaki-Einstein spaces

as a U(1) bundle over a Kähler-Einstein base, and η is a constant spinor satisfying two

projections generically written as Γ12η = −iη and Γ34η = iη. Note that this structure

comes from the Kähler base and is universal.

Part of our analysis of some branes could be made more precise. In particular, it would

be interesting to understand the new family of supersymmetric embeddings of D3-branes

in terms of algebraic geometry as well as in terms of operators in the field theory. We did

not present an analysis of the spectrum of excitations for all of the branes. In particular,

we would like to understand the excitations of the spacetime filling D7-branes and the

baryon vertex better. We hope that understanding the conformal case will provide the

basis for future analysis of deformed theories including the confining ones. For example,
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as shown by [26] and [29], the spacing of mass eigenvalues for the mesons in the confining

case inherits properties of the related conformal theory.

We would like to point out that fully matching the spectrum of wrapped branes with

field theory states is largely an ongoing problem. In particular, there are various embed-

dings that originate from branes of different dimensionality wrapping different cycles which

should be distinguishable from the field theory point of view. It would be interesting to

understand to what extent the topological data of the space determine the kind of su-

persymmetric branes that are allowed. Let us finish with a wishful statement. We have

found a large spectrum of supersymmetric wrapped branes and also non-supersymmetric

but stable branes. In analogy with the situation for strings in flat space and orbifolds one

wonders whether there is a sort of holographic K-theory which accounts for all the possible

branes in a given background.

We hope to return to these issues in the near future.
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Núñez and Peter Ouyang for insightful comments on the manuscript. F.C. and J.D.E.

wish to thank the Theory Division at CERN for hospitality while this work was being

completed. The research of L.A.P.Z. and D.V. was supported in part by Department of

Energy under grant DE-FG02-95ER40899 to the University of Michigan and the National

Science Foundation under Grant No. PHY99-07949 to the Kavli Institute for Theoretical

Physics. J.D.E. has been supported in part by ANPCyT under grant PICT 2002 03-11624,

and by the FCT grant POCTI/FNU/38004/2001. The work of F.C., J.D.E. and A.V.R.

was supported in part by MCyT, FEDER and Xunta de Galicia under grant FPA2005-

00188 and by the EC Commission under grants HPRN-CT-2002-00325 and MRTN-CT-

2004-005104. Institutional support to the Centro de Estudios Cient́ıficos (CECS) from

Empresas CMPC is gratefully acknowledged. CECS is a Millennium Science Institute and

is funded in part by grants from Fundación Andes and the Tinker Foundation.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200].

[2] For a review see, O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N

field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111].

[3] E. Witten, Baryons and branes in anti de Sitter space, JHEP 07 (1998) 006

[hep-th/9805112].

[4] S.S. Gubser and I.R. Klebanov, Baryons and domain walls in an N = 1 superconformal

gauge theory, Phys. Rev. D 58 (1998) 125025 [hep-th/9808075].

– 49 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2CB38%2C1113
http://xxx.lanl.gov/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C323%2C183
http://xxx.lanl.gov/abs/hep-th/9905111
http://jhep.sissa.it/stdsearch?paper=07%281998%29006
http://xxx.lanl.gov/abs/hep-th/9805112
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD58%2C125025
http://xxx.lanl.gov/abs/hep-th/9808075


J
H
E
P
0
3
(
2
0
0
6
)
1
0
1

[5] D. Berenstein, C.P. Herzog and I.R. Klebanov, Baryon spectra and AdS/CFT

correspondence, JHEP 06 (2002) 047 [hep-th/0202150].

[6] S. Gukov, M. Rangamani and E. Witten, Dibaryons, strings and branes in AdS orbifold

models, JHEP 12 (1998) 025 [hep-th/9811048].

[7] D. Berenstein, J.M. Maldacena and H. Nastase, Strings in flat space and pp waves from

N = 4 super Yang Mills, JHEP 04 (2002) 013 [hep-th/0202021].

[8] JJ.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859

[hep-th/9803002];

S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and

anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001].

[9] S.S. Gubser, Einstein manifolds and conformal field theories, Phys. Rev. D 59 (1999) 025006

[hep-th/9807164].

[10] I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau

singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080].

[11] C.E. Beasley, BPS branes from baryons, JHEP 11 (2002) 015 [hep-th/0207125].

[12] D. Arean, D.E. Crooks and A.V. Ramallo, Supersymmetric probes on the conifold, JHEP 11

(2004) 035 [hep-th/0408210].

[13] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS5 solutions of

M-theory, Class. and Quant. Grav. 21 (2004) 4335 [hep-th/0402153].

[14] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Sasaki-Einstein metrics on S2 × S3,

Adv. Theor. Math. Phys. 8 (2004) 711 [hep-th/0403002].

[15] D. Martelli and J. Sparks, Toric geometry, Sasaki-Einstein manifolds and a new infinite class

of AdS/CFT duals, Commun. Math. Phys. 262 (2006) 51 [hep-th/0411238].

[16] S. Benvenuti, S. Franco, A. Hanany, D. Martelli and J. Sparks, An infinite family of

superconformal quiver gauge theories with Sasaki-Einstein duals, JHEP 06 (2005) 064

[hep-th/0411264].

[17] M. Bertolini, F. Bigazzi and A.L. Cotrone, New checks and subtleties for AdS/CFT and

a-maximization, JHEP 12 (2004) 024 [hep-th/0411249].

[18] M. Cederwall, A. von Gussich, B.E.W. Nilsson, P. Sundell and A. Westerberg, The Dirichlet

super-p-branes in ten-dimensional type-IIA and IIB supergravity, Nucl. Phys. B 490 (1997)

179 [hep-th/9611159];

E. Bergshoeff and P.K. Townsend, Super D-branes, Nucl. Phys. B 490 (1997) 145

[hep-th/9611173];

M. Aganagic, C. Popescu and J.H. Schwarz, D-brane actions with local kappa symmetry,

Phys. Lett. B 393 (1997) 311 [hep-th/9610249]; Gauge-invariant and gauge-fixed D-brane

actions, Nucl. Phys. B 495 (1997) 99 [hep-th/9612080].

[19] K. Becker, M. Becker and A. Strominger, Five-branes, membranes and nonperturbative string

theory, Nucl. Phys. B 456 (1995) 130 [hep-th/9507158];

E. Bergshoeff, R. Kallosh, T. Ortin and G. Papadopoulos, kappa-symmetry, supersymmetry

and intersecting branes, Nucl. Phys. B 502 (1997) 149 [hep-th/9705040];

E. Bergshoeff and P.K. Townsend, Solitons on the supermembrane, JHEP 05 (1999) 021

[hep-th/9904020].

– 50 –

http://jhep.sissa.it/stdsearch?paper=06%282002%29047
http://xxx.lanl.gov/abs/hep-th/0202150
http://jhep.sissa.it/stdsearch?paper=12%281998%29025
http://xxx.lanl.gov/abs/hep-th/9811048
http://jhep.sissa.it/stdsearch?paper=04%282002%29013
http://xxx.lanl.gov/abs/hep-th/0202021
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C80%2C4859
http://xxx.lanl.gov/abs/hep-th/9803002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC22%2C379
http://xxx.lanl.gov/abs/hep-th/9803001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C025006
http://xxx.lanl.gov/abs/hep-th/9807164
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB536%2C199
http://xxx.lanl.gov/abs/hep-th/9807080
http://jhep.sissa.it/stdsearch?paper=11%282002%29015
http://xxx.lanl.gov/abs/hep-th/0207125
http://jhep.sissa.it/stdsearch?paper=11%282004%29035
http://jhep.sissa.it/stdsearch?paper=11%282004%29035
http://xxx.lanl.gov/abs/hep-th/0408210
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C21%2C4335
http://xxx.lanl.gov/abs/hep-th/0402153
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C8%2C711
http://xxx.lanl.gov/abs/hep-th/0403002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C262%2C51
http://xxx.lanl.gov/abs/hep-th/0411238
http://jhep.sissa.it/stdsearch?paper=06%282005%29064
http://xxx.lanl.gov/abs/hep-th/0411264
http://jhep.sissa.it/stdsearch?paper=12%282004%29024
http://xxx.lanl.gov/abs/hep-th/0411249
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB490%2C179
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB490%2C179
http://xxx.lanl.gov/abs/hep-th/9611159
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB490%2C145
http://xxx.lanl.gov/abs/hep-th/9611173
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB393%2C311
http://xxx.lanl.gov/abs/hep-th/9610249
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB495%2C99
http://xxx.lanl.gov/abs/hep-th/9612080
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB456%2C130
http://xxx.lanl.gov/abs/hep-th/9507158
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB502%2C149
http://xxx.lanl.gov/abs/hep-th/9705040
http://jhep.sissa.it/stdsearch?paper=05%281999%29021
http://xxx.lanl.gov/abs/hep-th/9904020


J
H
E
P
0
3
(
2
0
0
6
)
1
0
1

[20] J.P. Gauntlett, J. Gomis and P.K. Townsend, BPS bounds for worldvolume branes, JHEP 01

(1998) 003 [hep-th/9711205].

[21] C.P. Herzog, Q.J. Ejaz and I.R. Klebanov, Cascading RG flows from new Sasaki-Einstein

manifolds, JHEP 02 (2005) 009 [hep-th/0412193].

[22] I.R. Klebanov and N.A. Nekrasov, Gravity duals of fractional branes and logarithmic RG

flow, Nucl. Phys. B 574 (2000) 263 [hep-th/9911096].

[23] A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236].

[24] M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT

with flavour, JHEP 07 (2003) 049 [hep-th/0304032];

T. Sakai and J. Sonnenschein, Probing flavored mesons of confining gauge theories by

supergravity, JHEP 09 (2003) 047 [hep-th/0305049];

X.-J. Wang and S. Hu, Intersecting branes and adding flavors to the Maldacena-Núñez
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